913 resultados para segmentation and reverberation
Resumo:
Tutkimuksen tavoitteena on analysoida alhaisen tuloluokan segmentille kohdennettavaa mobiilituotetarjoomaa lähtien kohdesegmenttien määrittelystä aina suositeltavien tuoteominaisuuksien rajaamiseen. Taustatutkimuksen avulla selvitetään mobiilimarkkinoiden kehitykseen vaikuttavia tekijöitä asiakaspotentiaalin ja tulevaisuudennäkymien arvioimiseksi. Haastattelututkimuksen avulla on selvitetty kohdesegmentin mobiilipalvelujen tarvetta ja kyseisten markkinoiden tarjoamia mahdollisuuksia, jotta tähän tarpeeseen voidaan kannattavasti vastata. Mobiilipalveluiden saattamiseksi myös alhaisten tuloluokkien ulottuville, on loppuasiakkaalle mobiililiittymän hankkimisesta aiheutuva kokonaiskustannus saatava laskettua huomattavasti nykyistä alhaisemmalle tasolle. Tämä edellyttää, että operaattorin on voitava karsia omia kustannuksiaan jokaisella osa-alueella, ja kehitettävä uusia liiketoimintamalleja kannattavuuden säilyttämiseksi. Pohjimmiltaan tämä tarkoittaa sujuvaa yhteistyötä verkkojen ja mobiilipuhelinten valmistajien kanssa, huolellista markkinoiden segmentointia sekä tuotetarjooman kohdentamista.
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Resumo:
Tyon tavoitteena on selvittaa. mitka myyntistrategian ja siihen liittyvien muiden strategioiden kriittiset osat pienten ja keskisuurten ICT- yritysten toiminnassa. Tutkimusmenetelmana kaytettiin case- tutkimusta, jossa vertailtiin neljan pienen ja keskisuuren ohjelmisto talon toimintaa. Tutkimuksessa tunnistettiin nelja kriittista osa-aluetta, joiden hoitamiseen yritysten erityisesti tulisi kiinnittaa huomiota. Nama olivat: segmentointi ja kohdemarkkinoiden valinta, myyntikanavien valinta, myyntihenkiloston organisointi ja asiakassuuntautuneisuus, ja markkinointi tietojarjestelma. Tutkimus osoitti, etta yrityksen kasvaessa ja omistuksen eriytyessa toimivasta johdosta yrityksen strategia suunnittelusta tulee jarjestelmallisempaa.
Resumo:
Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.
Resumo:
The objective of this master’s thesis was to examine technology-based smart home devices and services. Topic was approached through basic theories, transaction cost theory and resource-based view in order to build basis for this thesis. Conceptual framework was discussed by means of networks, value networks and service systems which provide a useful framework for service development. The needs of the elderly living at home were discussed in order to find out which technology-based services could be used to satisfy the needs. Segmentation and need data collected previously during proactive home visits was exploited and additionally a survey targeted to experts and professionals of social and health care sector was done to verify the needs. Finally, the results of the survey were analyzed using quality function deployment method to figure out the most important and suitable service offerings for the elderly. As a conclusion of analysis, social media and monitoring services are the most useful technology-based services. However, traditional home services will still maintain their necessity too.
Resumo:
This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.
Resumo:
The primary purpose of this research is to develop an enhanced understanding of how consumption values influence environmentally responsible consumption of print and digital media. Theoretical elaboration considers the associations of functional, social and emotional consumption values, green consumer segmentation and media consumption. Additionally, the purpose is to identify consumer perceptions of print and digital media’s environmental responsibility. Empirical analysis was based on qualitative interviews with a sample of 20 Finnish consumers categorized in two segments: young adults and middle aged consumers. Primary data collection was conducted through individual, semi-structured interviews. To analyze the respondents’ approach on the topic, the interviews disclosed themes of media consumption, perceived environmental friendliness of media, norms of behavior and consumers’ general consumption patterns. The results implicate functional value dominated the consumption decision-making process both in a general level and in media consumption. In addition to functional value, environmental responsibility does provide consumers with both emotional and social values. Analysis on perceived environmental responsibility of media demonstrated consumers generally perceive digital media as an environmentally responsible alternative because it does not create physical paper waste. Nevertheless, the perceptions of environmental responsibility and media consumption patterns lacked a consistent connection. Though, both theory and empirical results indicated an average consumer lacks a comprehensive understanding of digital and print media’s life-cycle and hence their environmental advantages and disadvantages.
Resumo:
With the growth in new technologies, using online tools have become an everyday lifestyle. It has a greater impact on researchers as the data obtained from various experiments needs to be analyzed and knowledge of programming has become mandatory even for pure biologists. Hence, VTT came up with a new tool, R Executables (REX) which is a web application designed to provide a graphical interface for biological data functions like Image analysis, Gene expression data analysis, plotting, disease and control studies etc., which employs R functions to provide results. REX provides a user interactive application for the biologists to directly enter the values and run the required analysis with a single click. The program processes the given data in the background and prints results rapidly. Due to growth of data and load on server, the interface has gained problems concerning time consumption, poor GUI, data storage issues, security, minimal user interactive experience and crashes with large amount of data. This thesis handles the methods by which these problems were resolved and made REX a better application for the future. The old REX was developed using Python Django and now, a new programming language, Vaadin has been implemented. Vaadin is a Java framework for developing web applications and the programming language is extremely similar to Java with new rich components. Vaadin provides better security, better speed, good and interactive interface. In this thesis, subset functionalities of REX was selected which includes IST bulk plotting and image segmentation and implemented those using Vaadin. A code of 662 lines was programmed by me which included Vaadin as the front-end handler while R language was used for back-end data retrieval, computing and plotting. The application is optimized to allow further functionalities to be migrated with ease from old REX. Future development is focused on including Hight throughput screening functions along with gene expression database handling
Resumo:
We present a set of techniques that can be used to represent and detect shapes in images. Our methods revolve around a particular shape representation based on the description of objects using triangulated polygons. This representation is similar to the medial axis transform and has important properties from a computational perspective. The first problem we consider is the detection of non-rigid objects in images using deformable models. We present an efficient algorithm to solve this problem in a wide range of situations, and show examples in both natural and medical images. We also consider the problem of learning an accurate non-rigid shape model for a class of objects from examples. We show how to learn good models while constraining them to the form required by the detection algorithm. Finally, we consider the problem of low-level image segmentation and grouping. We describe a stochastic grammar that generates arbitrary triangulated polygons while capturing Gestalt principles of shape regularity. This grammar is used as a prior model over random shapes in a low level algorithm that detects objects in images.
Resumo:
Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.
Resumo:
Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.
Resumo:
En aquesta tesi s’estudia el problema de la segmentació del moviment. La tesi presenta una revisió dels principals algoritmes de segmentació del moviment, s’analitzen les característiques principals i es proposa una classificació de les tècniques més recents i importants. La segmentació es pot entendre com un problema d’agrupament d’espais (manifold clustering). Aquest estudi aborda alguns dels reptes més difícils de la segmentació de moviment a través l’agrupament d’espais. S’han proposat nous algoritmes per a l’estimació del rang de la matriu de trajectòries, s’ha presenta una mesura de similitud entre subespais, s’han abordat problemes relacionats amb el comportament dels angles canònics i s’ha desenvolupat una eina genèrica per estimar quants moviments apareixen en una seqüència. L´ultima part de l’estudi es dedica a la correcció de l’estimació inicial d’una segmentació. Aquesta correcció es du a terme ajuntant els problemes de la segmentació del moviment i de l’estructura a partir del moviment.
Resumo:
This study examined the acoustical conditions, including the surface-dimension measurements, background noise levels, and reverberation times in classrooms in a metropolitan area. The data collected in this study will help school administrators realize that appropriate classroom acoustics are necessary for both hearing impaired and normal hearing students.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.
Resumo:
The UK Government's Department for Energy and Climate Change has been investigating the feasibility of developing a national energy efficiency data framework covering both domestic and non-domestic buildings. Working closely with the Energy Saving Trust and energy suppliers, the aim is to develop a data framework to monitor changes in energy efficiency, develop and evaluate programmes and improve information available to consumers. Key applications of the framework are to understand trends in built stock energy use, identify drivers and evaluate the success of different policies. For energy suppliers, it could identify what energy uses are growing, in which sectors and why. This would help with market segmentation and the design of products. For building professionals, it could supplement energy audits and modelling of end-use consumption with real data and support the generation of accurate and comprehensive benchmarks. This paper critically examines the results of the first phase of work to construct a national energy efficiency data-framework for the domestic sector focusing on two specific issues: (a) drivers of domestic energy consumption in terms of the physical nature of the dwellings and socio-economic characteristics of occupants and (b) the impact of energy efficiency measures on energy consumption.