956 resultados para sapphire substrate
Resumo:
The mode frequency and the quality factor of nanowire cavities are calculated from the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In a free-standing nanowire cavity with dielectric constant epsilon = 6.0 and a length of 5 mu m, quality factors of 130, 159, and 151 are obtained for the HE11 modes with a wavelength around 375 nm, at cavity radius of 60, 75, and 90 nm, respectively. The corresponding quality factors reduce to 78, 94, and 86 for a nanowire cavity standing on a sapphire substrate with a refractive index of 1.8. The mode quality factors are also calculated for the TE01 and TM01 modes, and the mode reflectivities are calculated from the mode quality factors.
Resumo:
The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on alpha-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.
Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD
Resumo:
The morphological evolution of GaN thin films grown on sapphire by metalorganic chemical vapor deposition was demonstrated to depend strongly on the growth pressure of GaN nucleation layer (NL). For the commonly used two-step growth process, a change in deposition pressure of NL greatly influences the growth mode and morphological evolution of the following GaN epitaxy. By means of atomic force microscopy and scanning electron microscope, it is shown that the initial density and the spacing of nucleation sites on the NL and subsequently the growth mode of FIT GaN epilayer may be directly controlled by tailoring the initial low temperature NL growth pressure. A mode is proposed to explain the TD reduction for NL grown at relatively high reactor pressure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 mum. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.
Resumo:
Condensed clusters of point defects within an InGaN/AlGaN double heterostructure grown by metal-organic vapor phase epitaxy on sapphire substrate have been observed using transmission electron microscopy. The existence of voids results in failure of the heterostructure in electroluminescence. The voids are 50-100 nm in diameter and are distributed inhomogeneously within In0.25Ga0.75N/AlGaN active layers. The density of the voids was measured as 10(15) cm(-3), which corresponds to a density of dangling bonds of 10(20) cm(-3). These dangling bonds may fully deplete free carriers in this double heterostructure and result in the heterostructure having high resistivity as confirmed by electrical measurement. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The structural characteristic of cubic GaN (C-GaN) nucleation layers on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition was in detail investigated first by X-ray diffraction (XRD) measurements, using a Huber five-circle diffractometer and an intense synchrotron X-ray source. The XRD results indicate that the C-GaN nucleation layers are highly crystallized. Phi scans and pole figures of the (1 1 1) reflections give a convincing proof that the GaN nucleation layers show exactly cubic symmetrical structure. The GaN(1 1 1) reflections at 54.74degrees in chi are a measurable component, however (002) components parallel to the substrate surface are not detected. Possible explanations are suggested. The pole figures of {1 0 (1) over bar 0} reflections from H-GaN inclusions show that the parasitic H-GaN originates from the C-GaN nucleation layers. The coherence lengths along the close-packed [1 1 1] directions estimated from the (1 1 1) peaks are nanometer order of magnitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The crystallographic tilt of the lateral epitaxial overgrown (LEO) GaN on sapphire Substrate with SiNx mask is investiaated by double crystal X-ray diffraction. Two wing peaks beside the GaN 0002 peak can be observed for the as-grown LEO GaN. During the selective etching of SiNx mask, each wing peak splits into two peaks, one of which disappears as the mask is removed, while the other remains unchanged. This indicates that the crystallographic tilt of the overgrown region is caused not only by the plastic deformation resulted from the bending of threading dislocations, but by the non-uniformity elastic deformation related with the GaN, SiNx interfacial forces. The widths of these two peaks are also studied in this paper. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this letter, we report on the observation of Fermi-edge singularity in a modulation-doped AlGaN/GaN heterostructure grown on a c-face sapphire substrate by NH3 source molecular beam epitaxy. The two-dimensional electron gas (2DEG) characteristic of the structure is manifested by variable temperature Hall effect measurements down to 7 K. Low-temperature photoluminescence (PL) spectra show a broad emission band originating from the recombination of the 2DEG and localized holes. The enhancement in PL intensity in the high-energy side approaching Fermi level was observed at temperatures below 20 K. At higher temperatures, the enhancement disappears because of the thermal broadening of the Fermi edge. (C) 1998 American Institute of Physics. [S0003-6951(98)02543-1].
Resumo:
Using solid-phase regrowth technique, Pd/Ge contact has been made on the GaN layer, and very good ohmic behavior was observed for the contact. The Photoluminescence (PL) spectra for different structures formed by the Pd/Ge contact, GaN layer, sapphire substrate, and mirror were studied, and a defect-assisted transition was found at 450 nm related to Ge impurity. The results show that the microcavity effect strongly influences the PL spectra of the band-gap and defect-assisted transitions.
Resumo:
Using NH3 cracked on the growing surface as the nitrogen precursor, an AlGaN/GaN modulation-doped (MD) heterostructure without a buffer layer was grown on a nitridated sapphire substrate in a home-made molecular beam epitaxy (MBE) system. Though the Al composition is as low as 0.036, as deduced from photoluminescence (PL) measurements, the AlGaN barrier layer can be an efficient carrier supplier for the formation of a two-dimensional electron gas (2DEG) at the heterointerface. The 2DEG characteristics are verified by the variable temperature Hall measurements down to 7 K. Using a parallel conduction model, we estimate the actual mobility of the 2DEG to be 1100 cm(2)/V s as the sheet carrier density to be 1.0 x 10(12) cm(-2). Our results show that the AlGaN/GaN system is very suitable for the fabrication of high electron mobility transistors (HEMTs). (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A novel AlGaN/GaN/GaN/GaN double heterojunction high electron mobility transistors (DH-HEMTS) structure with an AlN interlayer on sapphire substrate has been grown by MOCVD. The structure featured a 6-10 nm In0.1Ga0.9N layer inserted between the GaN channel and GaN buffer. And wer also inserted one ultrathin. AlN interlayer into the Al/GaN/GaN interface, which significantly enhanced the mobility of two-dimensional electron gas (2DEG) existed in the GaN channel. AFM result of this structure shows a good surface morphology and a low dislocation density, with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu m x 5 mu m. Temperature dependent Hall measurement was performed on this sample, and a mobility as high as 1950 cm(2)/Vs at room temperature (RT) was obtained. The sheet carrier density was 9.89 x10(12) cm(2), and average sheet resistance of 327 Omega/sq was achieved. The mobility obtained in this paper is about 50% higher than other results of similar structures which have been reported. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
AlxGa1-xN layer was grown on sapphire substrate with GaN template by Metal Organic Chemical Vapor Deposition system (MOCVD). High temperature A1N (HT-A1N) interlayer was inserted between AlxGa1-xN layer and GaN template to solve the cracking problem that often appears on AlxGa1-xN surface when directly grown on high temperature GaN template. Optical microscope, scanning electron microscopy (SEM), atomic force microscope (AFM), high resolution x-ray diffraction (HRXRD) and cathodoluminescence (CL) were used for characterization. It was found that the cracking was successfully eliminated. Furthermore, the crystalline quality of AlxGa1-xN layer with HT-A1N interlayer was much improved. Interference fringes were found in the HRXRD images. CL test showed that yellow emission was much reduced for AlGaN layer with HT-A1N interlayer.