986 resultados para post-deformation annealing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the influence of growth parameters and post-growth annealing on the structural characterizations and magnetic properties of (Ga, Cr)As films. The crystalline quality and magnetic properties are sensitive to the growth conditions. The single-phase (Ga, Cr)As film with the Curie temperature of 10 K is synthesized at growth temperature T-s = 250 degrees C and with nominal Cr content x = 0.016. However, for the films with x > 0.02, the aggregation of Cr atoms is strongly enhanced as both T. and x increase, which not only brings strong compressive strain in the epilayer, but also roughens the surface. The origin of room-temperature ferromagnetism in (Ga, Cr)As films with nanoclusters is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al-2(SO4)(3)]=0.0837 mol.L-1, [NaHCO3]=0.214 mol.L-1, 15 degreesC. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to obtain greater radiation hardness for SIMOX (separation by implanted oxygen) materials, nitrogen was implanted into SIMOX BOX (buried oxide). However, it has been found by the C-V technique employed in this work that there is an obvious increase of the fixed positive charge density in the nitrogen-implanted BOX with a 150 out thickness and 4 x 10(15) cm(-2) nitrogen implantation dose, compared with that unimplanted with nitrogen. On the other hand, for the BOX layers with a 375 nm thickness and implanted with 2 x 10(15) and 3 x 10(15) cm(-2) nitrogen doses respectively, the increase of the fixed positive charge density induced by implanted nitrogen has not been observed. The post-implantation annealing conditions are identical for all the nitrogen-implanted samples. The increase in fixed positive charge density in the nitrogen-implanted 150 nm BOX is ascribed to the accumulation of implanted nitrogen near the BOX/Si interface due to the post-implantation annealing process according to SIMS results. In addition, it has also been found that the fixed positive charge density in initial BOX is very small. This means SIMOX BOX has a much lower oxide charge density than thermal SiO2 which contains a lot of oxide charges in most cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of gamma-radiation dose rate on the electrical properties of lead zirconate titanate capacitors was investigated. More severe degradations in dielectric constant, coercive field, remanent polarization and capacitance-voltage (C-V) curves occurred with increasing radiation dose at lower dose rates. The electrical properties exhibited distinct radiation dose rate dependence and the worst-case degradation occurred at the lowest dose rate. The radiation-induced degradation of parameters such as the coercive field drift and distortion of the C-V curve can be recovered partly through post-irradiation annealing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of Si overgrowth on the structural and luminescence properties of strained Ge layer grown on Si(1 0 0) is studied. Capping Si leads to the dissolution of Ge island apex and reduced island height. The structural changes in island shape, especially in chemical composition during Si overgrowth have a large effect on the PL properties. The integrated PL intensity of Ge layer increases and there are large blue shifts in peak energies after capping Si. The PL spectra from buried Ge layer are consistent with type-II band alignment in SiGe/Si. We show that the PL properties from buried Ge layer may be tailored by modifying the cap layer growth conditions as well as post-growth annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, combining low deposition rate with proper growth temperature, we have developed a way to prepare very low-density quantum dots (QDs) suited for the study of single OD properties without resorting to submicron lithography. Experiment results demonstrate that InAs desorption is significant during growing the low density QDs. Ripening of InAs QDs is clearly observed during the post-growth annealing. Photoluminescence spectroscopy reveals that the emission wavelength of low density InAs QDs arrives at 1332.4 nm with a GaAs capping layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the influence of growth parameters and post-growth annealing on the structural characterizations and magnetic properties of (Ga, Cr)As films. The crystalline quality and magnetic properties are sensitive to the growth conditions. The single-phase (Ga, Cr)As film with the Curie temperature of 10 K is synthesized at growth temperature T-s = 250 degrees C and with nominal Cr content x = 0.016. However, for the films with x > 0.02, the aggregation of Cr atoms is strongly enhanced as both T. and x increase, which not only brings strong compressive strain in the epilayer, but also roughens the surface. The origin of room-temperature ferromagnetism in (Ga, Cr)As films with nanoclusters is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of a reflectance-difference spectroscopy study of GaAs grown on (100) GaAs substrates by low-temperature molecular-beam epitaxy (LT-GaAs) are presented. In-plane optical anisotropy resonances which come from the linear electro-optic effect produced by the surface electric field are observed. The RDS line shape of the resonances clearly shows that the depletion region of LT-GaAs is indeed extremely narrow (much less than 200 Angstrom). The surface potential is obtained from the RDS resonance amplitude without the knowledge of space-charge density. The change of the surface potential with post-growth annealing temperatures reflects a complicated movement of the Fermi level in LT-GaAs. The Fermi level still moves for samples annealed at above 600 degrees C, instead of being pinned to the As precipitates. This behavior can be explained by the dynamic properties of defects in the annealing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes induced in the crystal structure of PTFE by irradiation at different temperatures have been investigated. In the dose and temperature range examined, the density of PTFE was observed to increase continuously with increasing dose due to the radiation-induced increase in crystallinity, while after post-irradiation annealing at 380-degrees-C, the density was observed to increase for samples irradiated at 20-degrees-C, and to begin to decrease after a certain dose for samples irradiated at 150 and 200-degrees-C. On the basis of the observation of radiation-induced separation of the melting peak of PTFE and its stability relative to the change in the rate of heating, the observed decrease in density was explained as being due to the radiation-induced crosslinking and/or branching inhibiting the process of crystallization and existing in the crystalline region as defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel method for creating damage-free ferroelectric nanostructures with a focused ion beam milling machine. Using a standard e-beam photoresist followed by a dilute acid wash, nanostructures ranging in size from 1 mu m down to 250 nm were created in a 90 nm thick lead zirconate titanate ( PZT) wafer. Transmission electron microscopy and piezoresponse force microscopy ( PFM) confirmed that the surfaces of the nanostructures remained damage free during fabrication, and showed no gallium implantation, and that there was no degradation of ferroelectric properties. In fact DC strain loops, obtained using PFM, demonstrated that the nanostructures have a higher piezoresponse than unmilled films. As the samples did not have any top hard mask, the method presented is unique as it allows for imaging of the top surface to understand edge effects in well-defined nanostructures. In addition, as no post-mill annealing was necessary, it facilitates investigation of nanoscale domain mechanisms without process-induced artefacts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hafnium oxide films have been deposited at 250 °C on silicon and germanium substrates by atomic layer deposition (ALD), using tetrakis-ethylmethylamino hafnium (TEMAH) and water vapour as precursors in a modified Oxford Instruments PECVD system. Self-limiting monolayer growth has been verified, characterised by a growth rate of 0.082 nm/ cycle. Layer uniformity is approximately within ±1% of the mean value. MOS capacitors have been fabricated by evaporating aluminium electrodes. CV analysis has been used to determine the bulk and interface properties of the HfO 2, and their dependence on pre-clean schedule, deposition conditions and post-deposition annealing. The dielectric constant of the HfO 2 is typically 18. On silicon, best results are obtained when the HfO 2 is deposited on a chemically oxidised hydrophilic surface. On germanium, best results are obtained when the substrate is nitrided before HfO 2 deposition, using an in-situ nitrogen plasma treatment. © Springer Science+Business Media, LLC 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the creation of a germanium on sapphire platform, via wafer bonding technology, for system-on-a-chip applications. Similar thermal coefficients of expansion between germanium (5.8 x 10-6 K-1) and sapphire (5 x 10-6 K-1) make the bonding of germanium to sapphire a reality. Germanium directly bonded to sapphire results in microvoid generation during post bond annealing. Inclusion of an interface layer such as silicon dioxide layer by plasma enhanced chemical vapour deposition, prior to bonding, results in a microvoid free bond interface after annealing. Grinding and polishing of the subsequent germanium layer has been achieved leaving a thick germanium on sapphire (GeOS) substrate. Submicron GeOS layers have also been achieved with hydrogen/helium co-implantation and layer transfer. Circular geometry transistors exhibiting a field effect mobility of 890 cm2/V s have been fabricated onto the thick germanium on sapphire layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Raman and spreading resistance profiling have been used to analyze defects in germanium caused by hydrogen and helium implants, of typical fluences used in layer transfer applications. Beveling has been used to facilitate probing beyond the laser penetration depth. Results of Raman mapping along the projection area reveal that after post-implant annealing at 400°C, some crystal damage remains, while at 600°C, the crystal damage has been repaired. Helium implants create acceptor states beyond the projected range, and for both hydrogen and helium, 1×1016 acceptors/cm2 remain after 600°C. These are thought to be vacancy-related point defect clusters.