901 resultados para microwave chemistry
Resumo:
Abstract. In this paper, we compare the diurnal variations in middle-atmospheric water vapor as measured by two ground-based microwave radiometers in the Alpine region near Bern, Switzerland. The observational data set is also compared to data from the chemistry–climate model WACCM. Due to the small diurnal variations of usually less than 1%, averages over extended time periods are required. Therefore, two time periods of five months each, December to April and June to October, were taken for the comparison. The diurnal variations from the observational data agree well with each other in amplitude and phase. The linear correlation coefficients range from 0.8 in the upper stratosphere to 0.5 in the upper mesosphere. The observed diurnal variability is significant at all pressure levels within the sensitivity of the instruments. Comparing our observations with WACCM, we find that the agreement of the phase of the diurnal cycle between observations and model is better from December to April than from June to October. The amplitudes of the diurnal variations for both time periods increase with altitude in WACCM, but remain approximately constant at 0.05 ppm in the observations. The WACCM data are used to separate the processes that lead to diurnal variations in middle-atmospheric water vapor above Bern. The dominating processes were found to be meridional advection below 0.1 hPa, vertical advection between 0.1 and 0.02 hPa and (photo-)chemistry above 0.02 hPa. The contribution of zonal advection is small. The highest diurnal variations in water vapor as seen in the WACCM data are found in the mesopause region during the time period from June to October with diurnal amplitudes of 0.2 ppm (approximately 5% in relative units).
Resumo:
The ground-based microwave radiometer MIAWARA-C recorded the upper stratospheric and lower mesospheric water vapour distribution continuously from June 2011 to March 2013 above the Arctic station of Sodankylä, Finland (67.4° N, 26.6° E) without major interruptions and offers water vapour profiles with temporal resolution of 1 h for average conditions. The water vapour time series of MIAWARA-C shows strong periodic variations in both summer and winter related to the quasi-2-day wave. Above 0.1 hPa the amplitudes are strongest in summer. The stratospheric wintertime 2-day wave is pronounced for both winters on altitudes below 0.1 hPa and reaches a maximum amplitude of 0.8 ppmv in November 2011. Over the measurement period, the instrument monitored the changes in water vapour linked to two sudden stratospheric warmings in early 2012 and 2013. Based on the water vapour measurements, the descent rate in the vortex after the warmings is 364 m d−1 for 2012 and 315 m d−1 for 2013.
Resumo:
The structures of two substituted acetylene compounds have been characterized from their microwave rotational spectra. In the first study, two structures of 6-methyl-3-heptyne have been determined. This compound can be thought of as an ethyl group separated from an isobutyl group by a C≡C spacer. Both structures have the ethyl and isobutyl groups eclipsed, consistent with the dominant interaction determining the orientation about the acetylene axis being the weak dispersion attraction between the end groups. One structure is with the isobutyl group in a symmetric conformation and the other with the isobutyl group asymmetric. In addition, the microwave spectrum of the butane analogue 3,5-octadiyne has been observed. This compound consists of two ethyl groups separated by two C≡C spacers. The study is still in progress, but it appears that the ethyl end groups are freely rotating. Therefore, it seems that the dispersion attractions between the end groups are too weak at this longer distance of about 7 Å. The structures of several fluorocarbons have also been studied by microwave spectroscopy. The structures of perfluoropentane and perfluorohexane have been shown to be helical, like the polymer polytetrafluoroethylene (Teflon©). The structure of perfluoropropane and two conformers of 1H-heptafluoropropane have been determined to be non-helical. It is apparent that the steric and dipole repulsions between fluorine atoms that have been attributed to the helical structure of longer fluorocarbon chains are not sufficient in a three carbon chain to cause a twist in the structures.
Resumo:
The thermal multicomponent 1,3-dipolar cycloaddition (1,3-DC) of diethyl aminomalonate or α-amino esters (derived from glycine, alanine, phenylalanine, and phenylglycine) with ethyl glyoxylate and the corresponding dipolarophile such as maleimides, methyl acrylate, methyl fumarate, (E)-1,2-bis(phenylsulfonyl)ethylene, and electron deficient alkynes allows the diastereoselective synthesis of new polysubstituted pyrrolidine derivatives. Microwave-assisted heating processes give better results than conventional heating ones, affording endo-cycloadducts as major stereoisomers. In general, 2,5-cis-cycloadducts are preferentially formed according to the previous formation of the W-shaped dipole. Only in the 1,3-DC of the disulfone with phenylglycine and ethyl glyoxylate the corresponding exo-trans-cycloadduct was isolated. The compound endo-cis-4b, derived from phenylalanine, ethyl glyoxylate and N-benzylmaleimide, has been further transformed into a very complex diazabicyclo[2.2.1]octane skeleton with potential biological activity.
Resumo:
A highly regio- and stereoselective oxime palladacycle/imidazolinium-catalyzed head to head dimerization of terminal aryl alkynes in water is presented. The reaction, which is carried out at 130 °C under microwave irradiation in the presence of 1,3-bis-(2,6-diisopropylphenyl)imidazolinium chloride as ligand, triethylamine as base, and TBAB as surfactant, allows the synthesis of (E)-1,4-enynes as single stereoisomers in good isolated yields.
Resumo:
Microwave irradiation has considerably enhanced the efficiency of the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)imines in isopropyl alcohol catalyzed by a ruthenium complex bearing the achiral ligand 2-amino-2-methylpropan-1-ol. In addition to shortening reaction times for the transfer hydrogenation processes to only 30 min, the amounts of ruthenium catalyst and isopropyl alcohol can be considerably reduced in comparison with our previous procedure assisted by conventional heating, which diminishes the environmental impact of this new protocol. This methodology can be applied to aromatic, heteroaromatic and aliphatic N-(tert-butylsulfinyl)ketimines, leading, after desulfinylation, to the expected primary amines in excellent yields and with enantiomeric excesses of up to 96 %.
Resumo:
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box–Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
Resumo:
Perturbations in the bismuth market resulted in Mining and Chemical Products Ltd., seeking further outlets in the market. Together with Manchem Ltd. they were anxious to evaluate the possibility of using bismuth compounds as a replacement for lead/calcium soaps in paint driers. A range of new organobismuth compounds were synthesised of the type RBiX2 and R3BiX2 (X= halogen, OOCR, dithiocarbamate). A variety of synthetic techniques were explored, including the use of mathematical reactions, phase-transfer catalysis and microwave energy. The preparation of a range of trivalent and pentavalent organobismuth carboxylates is reported and their infra-red , 13C, lH nmr spectra. The compounds were evaluated as paint driers and in cases found to enhance paint drying to a greater degree than the standard driers, to which they were being compared. The drying times of paint films containing the organobismuth compounds are reported, together with a comparison of the drying times with the addition of bismuth tris-diethyldithiocarbamate, which may promote the cross-linking reaction that occur in paint films during the drying process. Examples are reported to illustrate the great reductions in reaction times possible when using microwave energy. Reactions such as metallation of aromatic rings, ligand redistribution and synthesis were carried out in PTFE containers in a conventional domestic microwave oven. An X-ray diffraction study of (phenylazophenyl-C,N')mercury(II) chloride has shown it to be dimeric via long Hg-Cl bridging interactions of 3.367A. Its crystal structure is reported, together with its 13C nmr spectra and mass spectrum. The Lewis acidity of compounds of the type RBiX2 was investigated. The donor group being anchored to the organo group (R). The dithiocarbamates bis- (diethyldithiobarbamato)phenylbismuth(Ill) and [2-2-pyridyl)phenylbismuth(III) were synthesised, and their crystal structures, 14N, 13C nmr ar1d infra-red spectra are reported. Both compounds are pseudo-pentagonal bipyramidal in geometry, with two long Bi-S bonds and two short Bi-S bonds. The reaction of RBiBr2 (R= 2-(pyridyl) with various ligands is reported. The infra-red evidence suggesting that the coordination of extra ligands is accompanied by a reduction of the strength of the Bi-interaction.
Resumo:
Microwave synthesis is shown to be a valuable route to novel fluorinated ionic liquid surfactants. 1-Methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium iodide was prepared by treatment of 1-methylimidazole with 1-iodo-1H,1H,2H,2H-perfluorohexane in a microwave reactor, and this product underwent anion exchange to yield 1-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium nonafluoro-1-butanesulfonate. This catanionic surfactant showed intriguing phase behavior and low surface tension.
Resumo:
The highly efficient eco-friendly synthesis of ketones (yields over 99%) from secondary alcohols is achieved by combination of [FeCl2{eta(3)-HC(pz)(3)}] (pz = pyrazol-1-yl) supported on functionalized multi-walled carbon nanotubes and microwave irradiation, in a solvent-free medium. The carbon homoscorpionate iron(II) complex is the first one of this class to be used as catalyst for the oxidation of alcohols.
Resumo:
Conspectus: The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide–alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10–30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very effective in the multicomponent and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water from organic halides as azido precursors; magnetically recoverable CuNPs (3.0 ± 0.8 nm) supported on MagSilica could be alternatively used for the same purpose under similar conditions. Incorporation of an aromatic substituent at the 1-position of the triazole could be accomplished using the same CuNPs/C catalytic system starting from aryldiazonium salts or anilines as azido precursors. CuNPs/C in water also catalyzed the regioselective double-click synthesis of β-hydroxy-1,2,3-triazoles from epoxides. Furthermore, alkenes could be also used as azido precursors through a one-pot CuNPs/C-catalyzed azidosulfenylation–CuAAC sequential protocol, providing β-methylsulfanyl-1,2,3-triazoles in a stereo- and regioselective manner. In all types of reaction studied, CuNPs/C exhibited better behavior than some commercial copper catalysts with regard to the metal loading, reaction time, yield, and recyclability. Therefore, the results of this study also highlight the utility of nanosized copper in click chemistry compared with bulk copper sources.