988 resultados para gamma-gamma-coincidence
Resumo:
The extragalactic diffuse emission at gamma-ray energies has interesting cosmological implications since these photons suffer little or no attenuation during their propagation from the site of origin. The emission could originate from either truly diffuse processes or from unresolved point sources such as AGNs, normal galaxies and starburst galaxies. Here, we examine the unresolved point source origin of the extragalactic gamma-ray background emission from normal galaxies and starburst galaxies. gamma-ray emission from normal galaxies is primarily coming from cosmic-ray interactions with interstellar matter and radiation (similar to 90%) along with a small contribution from discrete point sources (similar to 10%). Starburst galaxies are expected to have enhanced supernovae activity which leads to higher cosmic-ray densities, making starburst galaxies sufficiently luminous at gamma-ray energies to be detected by the current gamma-ray mission(Fermi Gamma-ray Space Telescope).
Resumo:
Synthesis of Andirolactone (Image ), starting from 4-methyl cyclohex-3-en-1-one (Image ), via the radical cyclisation of the bromoacetal (Image ), is described.
Resumo:
The synchronization of neuronal activity, especially in the beta- (14-30 Hz) /gamma- (30 80 Hz) frequency bands, is thought to provide a means for the integration of anatomically distributed processing and for the formation of transient neuronal assemblies. Thus non-stimulus locked (i.e. induced) gamma-band oscillations are believed to underlie feature binding and the formation of neuronal object representations. On the other hand, the functional roles of neuronal oscillations in slower theta- (4 8 Hz) and alpha- (8 14 Hz) frequency bands remain controversial. In addition, early stimulus-locked activity has been largely ignored, as it is believed to reflect merely the physical properties of sensory stimuli. With human neuromagnetic recordings, both the functional roles of gamma- and alpha-band oscillations and the significance of early stimulus-locked activity in neuronal processing were examined in this thesis. Study I of this thesis shows that even the stimulus-locked (evoked) gamma oscillations were sensitive to high-level stimulus features for speech and non-speech sounds, suggesting that they may underlie the formation of early neuronal object representations for stimuli with a behavioural relevance. Study II shows that neuronal processing for consciously perceived and unperceived stimuli differed as early as 30 ms after stimulus onset. This study also showed that the alpha band oscillations selectively correlated with conscious perception. Study III, in turn, shows that prestimulus alpha-band oscillations influence the subsequent detection and processing of sensory stimuli. Further, in Study IV, we asked whether phase synchronization between distinct frequency bands is present in cortical circuits. This study revealed prominent task-sensitive phase synchrony between alpha and beta/gamma oscillations. Finally, the implications of Studies II, III, and IV to the broader scientific context are analysed in the last study of this thesis (V). I suggest, in this thesis that neuronal processing may be extremely fast and that the evoked response is important for cognitive processes. I also propose that alpha oscillations define the global neuronal workspace of perception, action, and consciousness and, further, that cross-frequency synchronization is required for the integration of neuronal object representations into global neuronal workspace.
Resumo:
While Mo in the Co-Mo/y-A1203 hydrodesulfurization catalyst is present as a sulfidic species similar to MoS2, Co shows two types of coordination, one with six sulfurs (but not a bulk sulfide) and the other with four oxygens. The significance of such species is discussed. In addition to an additive relation of the EXAFS function and the residual spectra, the ratio of amplitude terms of the catalyst and the model system has been employed in the analysis.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.
Resumo:
Management of insecticide resistance.
Resumo:
Serum gamma-glutamyl transferase (GGT) activity is a marker of liver disease which is also prospectively associated with the risk of all-cause mortality, cardiovascular disease, type 2 diabetes and cancers. We have discovered novel loci affecting GGT in a genome-wide association study (rs1497406 in an intergenic region of chromosome 1, P = 3.9 x 10(-8); rs944002 in C14orf73 on chromosome 14, P = 4.7 x 10(-13); rs340005 in RORA on chromosome 15, P = 2.4 x 10(-8)), and a highly significant heterogeneity between adult and adolescent results at the GGT1 locus on chromosome 22 (maximum P(HET) = 5.6 x 10(-12) at rs6519520). Pathway analysis of significant and suggestive single-nucleotide polymorphism associations showed significant overlap between genes affecting GGT and those affecting common metabolic and inflammatory diseases, and identified the hepatic nuclear factor (HNF) family as controllers of a network of genes affecting GGT. Our results reinforce the disease associations of GGT and demonstrate that control by the GGT1 locus varies with age.
Resumo:
The rates of alkaline hydrolysis of methyl &benzoylpropionate (I), methyl y-benzoylbutyrate (11) and methyll6-benzoylvalerate (In) decrease in the order I > I1 > III. Keto participation is the predominant pathway in the case of y-keto esters. Evidence has also been obtained for keto participation in the case of 6-keto esters, whereas no such evidence is available in the case of r-keto esters studied.
Resumo:
The quasi-aromatic property of metal chelates of thio-beta-diketones has been studied by reacting them with phenylisocyanate, where addition takes place at the gamma-CH in a stepwise manner. Mono-thiodiketonates of Ni(II), Pd(II), cu(II) and Co(III) and the dithio-acetylacetonate of Ni(II) react with phenylisocyanate to produce mono-, di- and triphenylamido [with cobalt (III) only] substituted derivatives. In the case of tris (ethylthioacetoacetato) cobalt (III), it is found that the reaction with phenylisocyanate gives two isomers, a chocolate coloured isomer in which the phenylamido carbonyl is not coordinated while the green coloured isomer has bonding through phenylemido carbonyl oxygen. The reactions of the thiodiketonates have been compared with those of beta-diketonates and beta-ketoiminates. The reaction products have been characterised by elemental analyses, magnetic moments, and electronic, IR and 1H NMR spectral studies.
Resumo:
The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.
Resumo:
The rates of base-catalyzed hydrolysis of pseudo esters derived from y-keto acids show strikingly poor sensitivity to the nature of the leaving group.la The rates vary in the narrow range of about 12-fold as contrasted to a 103-fold spread of the corresponding benzoate esters. The results presented are consistent with a rate-determining formation of a tetrahedral intermediate (11) and i t s rapid collapse, by the cleavage of the lactone ring in a fast step.
Resumo:
Gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn) is an achiral, conformationally constrained gamma amino acid residue. A survey of available crystal structures of Gpn peptides reveals that the torsion angles about the C-gamma-C-beta (theta(1)) and C-beta-C-alpha(theta(2)) bonds are overwhelmingly limited to gauche, gauche (g(+)g(+)/g(-)g(-)) conformations. The Gpn residue forms C-7 and C-9 hydrogen bonds in which the donor and acceptor atoms come from the flanking peptide units. In combination with alpha amino acid residues alpha gamma and gamma alpha segments can adopt C-12 hydrogen bonded structures. The conformational choices available to the Gpn residue have been probed using energy calculations, adopting a grid search strategy. Ramachandran phi-psi maps have been constructed for fixed values of theta(1) and theta(2), corresponding to the gauche and trans conformations. The sterically allowed and energetically favorable regions of conformational space have been defined and experimental observations compared. C-7 and C-9 hydrogen bonded conformational families have been identified using a grid search approach in which theta(1) and theta(2) values are varied over a range of +/- 10 degrees about ideal values at 1 degrees intervals. The theoretical analysis together with experimental observations for 59 Gpn residues from 35 crystal structures permits definition of the limited range of conformational possibilities at this gamma amino acid residue. .
Resumo:
Gamma delta T cells are thought to mediate immune responses at epithelial surfaces. We have quantified and characterized hepatic and peripheral blood gamma delta T cells from 11 normal and 13 unresolved tumor-bearing human liver specimens. gamma delta T cells are enriched in normal liver (6.6% of T cells) relative to matched blood (0.9%; P = 0.008). The majority express CD4(-)CD8(-) phenotypes and many express CD56 and/or CD161. In vitro, hepatic gamma delta T cells can be induced to kill tumor cell lines and release interferon-gamma, tumor necrosis factor-alpha, interleukin-2 and interleukin-4. Analysis of V gamma and V delta chain usage indicated that V delta 3(+) cells are expanded in normal livers (21.2% of gamma delta T cells) compared to blood (0.5%; P = 0.001). Tumor-bearing livers had significant expansions and depletions of gamma delta T cell subsets but normal cytolytic activity. This study identifies novel populations of liver T cells that may play a role in immunity against tumors.
Resumo:
Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino adds, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet. Researchers can also generate structural diversity through the synthesis of polypeptide chains containing homologated (omega) amino acid residues, which contain a variable number of backbone atoms. However, incorporating amino adds with more atoms within the backbone introduces additional torsional freedom into the structure, which can complicate the structural analysis. Fortunately, gabapentin (Gpn), a readily available bulk drug, is an achiral beta,beta-disubstituted gamma amino add residue that contains a cyclohexyl ring at the C-beta carbon atom, which dramatically limits the range of torsion angles that can be obtained about the flanking C-C bonds. Limiting conformational flexibility also has the desirable effect of increasing peptide crystallinity, which permits unambiguous structural characterization by X-ray diffraction methods. This Account describes studies carried out in our laboratory that establish Gpn as a valuable residue in the design of specifically folded hybrid peptide structures. The insertion of additional atoms into polypeptide backbones facilitates the formation of intramolecular hydrogen bonds whose directionality is opposite to that observed in canonical alpha-peptide helices. If hybrid structures mimic proteins and biologically active peptides, the proteolytic stability conferred by unusual backbones can be a major advantage in the area of medicinal chemistry. We have demonstrated a variety of internally hydrogen-bonded structures in the solid state for Gpn-containing peptides, including the characterization of the C-7 and C-9 hydrogen bonds, which can lead to ribbons in homo-oligomeric sequences. In hybrid alpha gamma sequences, district C-12 hydrogen-bonded turn structures support formation of peptide helices and hairpins in longer sequences. Some peptides that include the Gpn residue have hydrogen-bond directionality that matches alpha-peptide helices, while others have the opposite directionality. We expect that expansion of the polypeptide backbone will lead to new classes of foldamer structures, which are thus far unknown to the world of alpha-polypeptides. The diversity of internally hydrogen-bonded structures observed in hybrid sequences containing Gpn shows promise for the rational design of novel peptide structures incorporating hybrid backbones.