969 resultados para fault-tolerant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of fault-tolerant computing systems is a very difficult task. Two reasons contributed to this difficulty can be described as follows. The First is that, in normal practice, fault-tolerant computing policies and mechanisms are deeply embedded into most application programs, so that these application programs cannot cope with changes in environments, policies and mechanisms. These factors may change frequently in a distributed environment, especially in a heterogeneous environment. Therefore, in order to develop better fault-tolerant systems that can cope with constant changes in environments and user requirements, it is essential to separate the fault tolerant computing policies and mechanisms in application programs. The second is, on the other hand, a number of techniques have been proposed for the construction of reliable and fault-tolerant computing systems. Many computer systems are being developed to tolerant various hardware and software failures. However, most of these systems are to be used in specific application areas, since it is extremely difficult to develop systems that can be used in general-purpose fault-tolerant computing. The motivation of this thesis is based on these two aspects. The focus of the thesis is on developing a model based on the reactive system concepts for building better fault-tolerant computing applications. The reactive system concepts are an attractive paradigm for system design, development and maintenance because it separates policies from mechanisms. The stress of the model is to provide flexible system architecture for the general-purpose fault-tolerant application development, and the model can be applied in many specific applications. With this reactive system model, we can separate fault-tolerant computing polices and mechanisms in the applications, so that the development and maintenance of fault-tolerant computing systems can be made easier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault tolerance of robotic manipulators is determined based on the fault tolerance measures. In this study a Jacobian of a 7DOF optimal fault tolerant manipulator is designed based on optimality of worse case relative manipulability and worse case dexterity from geometric perspective instead of numerical solution of constrained optimisation problem or construction of optimal Jacobean through a desired null space. The proposed Jacobean matrix is optimal and equally fault tolerant for a single joint failure within any joint of the manipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a robotic manipulator is fault tolerant it is beneficial to study the configurations which tolerate non-catastrophic locked joint failures with a minimum relative change for the joint velocities. This problem is addressed using the properties of the condition number of the Jacobian matrix. The relationship between the faults within the joints of the manipulators and the condition number of the Jacobean matrix is used to introduce the optimal configurations for fault recovery. These optimum configurations require a minimum reconfiguration for fault tolerance of robotics manipulators. Then these configurations are studied for a 4-DOF planar manipulator to validate the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If the end-effector of a robotic manipulator moves on a specified trajectory, then for the fault tolerant operation, it is required that the end-effector continues the trajectory with a minimum velocity jump when a fault occurs within a joint. This problem is addressed in the paper. A way to tolerate the fault is to find new joint velocities for the faulty manipulator in which results into the same end-effector velocity provided by the healthy manipulator. The aim of this study is to find a strategy which optimally redistributes the joint velocities for the remained healthy joints of the manipulators. The optimality is defined by the minimum end-effector velocity jump. A solution of the problem is presented and it is applied to a robotics manipulator. Then through a case study and a simulation study it is validated. The paper shows that if would be possible the joint velocity redistribution results into a zero velocity jump.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the existing studies on fault-tolerant scheduling, the active replication schema makes use of ε + 1 replicas for each task to tolerate ε failures. However, in this paper, we show that it does not always lead to a higher reliability with more replicas. Besides, the more replicas implies more resource consumption and higher economic cost. To address this problem, with the target to satisfy the user’s reliability requirement with minimum resources, this paper proposes a new fault tolerant scheduling algorithm: MaxRe. In the algorithm, we incorporate the reliability analysis into the active replication schema and the theoretical analysis and experiments prove that the MaxRe algorithm’s schedule can certainly satisfy user’s reliability requirements. And the MaxRe scheduling algorithm can achieve the corresponding reliability with at most 70% fewer resources than the FTSA algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the leader-follower tracking problem of a four-wheel-steering robot subjected to nonlinear uncertainties. Two control laws have been developed, based on the adaptive sliding mode method and the adaptive input-output feedback linearization method. The proposed control schemes have been tested by means of simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design of locally optimal fault tolerant manipulators has been recently addressed via using the constraints of the desired null space for the Jacobian matrix of the manipulators. In the present paper the Jacobian matrices for optimal fault tolerance are presented based on geometric properties of column vectors instead of the null space. They are equally fault tolerant to a single joint failure from the worst-case relative manipulability and worst-case dexterity points of view. The optimality is achieved through a symmetric distribution of points on spheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of locally optimal fault-tolerant manipulators has been previously addressed via adding constraints on the bases of a desired null space to the design constraints of the manipulators. Then by algebraic or numeric solution of the design equations, the optimal Jacobian matrix is obtained. In this study, an optimal fault-tolerant Jacobian matrix generator is introduced from geometric properties instead of the null space properties. The proposed generator provides equally fault-tolerant Jacobian matrices in R3 that are optimally fault tolerant for one or two locked joint failures. It is shown that the proposed optimal Jacobian matrices are directly obtained via regular pyramids. The geometric approach and zonotopes are used as a novel tool for determining relative manipulability in the context of fault-tolerant robotics and for bringing geometric insight into the design of optimal fault-tolerant manipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses “Optimal Fault-Tolerant Robotic Manipulators” for locked-joint failures and consists of three components. It begins by investigating the regions of workspace where the manipulator can operate with high reliability. It then continues with an efficient deployment of kinematic redundancies for fault-tolerant operation. Finally, it presents a novel method for design of optimal fault-tolerant manipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault-tolerant motion of redundant manipulators can be obtained by joint velocity reconfiguration. For fault-tolerant manipulators, it is beneficial to determine the configurations that can tolerate the locked-joint failures with a minimum relative joint velocity jump, because the manipulator can rapidly reconfigure itself to tolerate the fault. This paper uses the properties of the condition numbers to introduce those optimal configurations for serial manipulators. The relationship between the manipulator's locked-joint failures and the condition number of the Jacobian matrix is indicated by using a matrix perturbation methodology. Then, it is observed that the condition number provides an upper bound of the required relative joint velocity change for recovering the faults which leads to define the optimal fault-tolerant configuration from the minimization of the condition number. The optimization problem to obtain the minimum condition number is converted to three standard Eigen value optimization problems. A solution is for selected optimization problem is presented. Finally, in order to obtain the optimal fault-tolerant configuration, the proposed method is applied to a 4-DoF planar manipulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the actuator failure compensation problem of non-linear fourwheel-steering mobile robots based on vehicle kinematics, undergoing both known and unknown failures causing degenerated steering performance or wheels stuck at some observable angles. Terminal sliding mode control technique is used to guarantee the tracking stability infinite time with the presence of actuator fault. Simulation results are given to illustrate the effectiveness of the proposed control scheme. © Institution of Engineers Australia 2012.