754 resultados para elementary science teaching
Resumo:
As indicated in a previous Teaching Science article, effective planning for curricula integration requires using standards from two (or more) subject areas (e.g., science and English, science and art or science and mathematics), which also becomes the assessment foci for teaching and learning. Curricula integration of standards into an activity necessitates pedagogical knowledge for developing students’ learning in both subject areas. For science education, the skills and tools for curricula integration include the use of other key learning areas (KLAs). A balance between teacher and student-centred science education programs that draw on democratic processes (e.g., Beane, 1997) can be used to make real-world links to target students’ individual needs. This article presents practical ways to commence thinking about curricula integration towards using Australian curriculum standards.
Resumo:
In many countries there is a shortage of quality teachers in areas of science, technology, engineering and mathematics (STEM). Additional to the low levels of recruitment is an extraordinary high attrition rate with some 50% of beginning teachers leaving the profession within five years. One solution implemented in several countries has been to encourage mid-career professionals in the area of STEM to become school teachers. These professionals are said to bring to teaching enthusiasm, knowledge and a passion for their subject which will impact engagement and learning by students. However, these career-changers have constructed professional identities and are accustomed to working within a culture of collaboration and inquiry. In contrast, school cultures are quite different and often teaching is a lonely solitary affair with little opportunity for collegial relationships aimed at knowledge building in the context of teaching. Crossing from a culture of STEM to a culture of schools and teaching can be challenging. This study was conducted with 13 teachers who were followed for three years. However, this paper reports on the experiences of one teacher with an engineering background crossing the boundaries from practising STEM to Teaching STEM.
Resumo:
This study is about young adolescents' engagement in learning science. The middle years of schooling are critical in the development of students' interest and engagement with learning. Successful school experiences enhance dispositions towards a career related to those experiences. Poor experiences lead to negative attitudes and rejection of certain career pathways. At a time when students are becoming more aware, more independent and focused on peer relationships and social status, the high school environment in some circumstances offers more a content-centred curriculum that is less personally relevant to their lives than the social melee surrounding them. Science education can further exacerbate the situation by presenting abstract concepts that have limited contextual relevance and a seemingly difficult vocabulary that further alienates adolescents from the curriculum. In an attempt to reverse a perceived growing disinterest by students to science (Goodrum, Druhan & Abbs, 2011), a study was initiated based on a student-centred unit designed to enhance and sustain adolescent engagement in science. The premise of the study was that adolescent students are more responsive toward learning if they are given an appropriate learning environment that helps connect their learning with life beyond the school. The purpose of this study was to examine the experiences of young adolescents with the aim of transforming school learning in science into meaningful experiences that connected with their lives. Two areas were specifically canvassed and subsumed within the study to strengthen the design base. One area that of the middle schooling ideology, offered specific pedagogical approaches and a philosophical framework that could provide opportunities for reform. The other area, the construct of scientific literacy (OECD, 2007) as defined by Holbrook and Rannikmae, (2009) appeared to provide a sense of purpose for students to aim toward and value for becoming active citizens. The study reported here is a self-reflection of a teacher/researcher exploring practice and challenging existing approaches to the teaching of science in the middle years of schooling. The case study approach (Yin, 2003) was adopted to guide the design of the study. Over a 6-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of student-centred pedagogical practices with a Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. Both quantitative and qualitative data sources were employed in a partially mixed methods research approach (Leech & Onwuegbuzie, 2009) dominated by qualitative data with the concurrent collection of quantitative data to corroborate interpretations as a means of analysing and developing a model of the dynamic learning environment. The findings from the case study identified five propositions that became the basis for a model of a student-centred learning environment that was able to sustain student participation and thus engagement in science. The study suggested that adolescent student engagement can be promoted and sustained by providing a classroom climate that encourages and strengthens social interaction. Engagement in science can be enhanced by presenting developmentally appropriate challenges that require rigorous exploration of contextually relevant learning environments; supporting students to develop connections with a curriculum that aligns with their own experiences. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provide an authentic model for reforming pedagogy. The model and theory presented became an adjunct to my repertoire for science teaching in the middle years of schooling. The study was rewarding in that it helped address a void in my understanding of middle years of schooling by prompting me to re-think the notion of adolescence in the context of the science classroom. This study is timely given the report "The Status and Quality of Year 11 and 12 Science in Australian Schools" (Goodrum, Druhan & Abbs, 2011) and national curricular changes that are being proposed for science (ACARA, 2009).
Resumo:
The establishment and continuity of two international comparative assessments of science learning—the IEA’s TIMSS project and the OECD’s PISA project—have meant that there are now high-status reference points for other national and more local approaches to assessing the efficacy of science teaching and learning. Both projects, albeit with very different senses of what the outcome of science learning should be, have contributed positively and negatively to the current state of assessment of school science. The TIMSS project looks back at the science that is commonly included in the curricula of the participating countries. It is thus not about established school science nor about innovations in it. PISA is highly innovative looking, prospectively forward to see how students can use their science learning in everyday life situations. In this chapter some of these positives and negatives are discussed.
Resumo:
The intentions of the science curriculum are very often constrained by the forms of student learning that are required by, or are currently available within, the system of education. Furthermore, little attention is given to developing new approaches to assessment that would encourage these good intentions. In this chapter, we argue that achieving this broadening of the intentions of science education will require a diversity of assessment techniques and that only a profile of each student’s achievement will capture the range of intended learnings. We explore a variety of assessment modes that match some of these new aspects of science learning and that also provide students with both formative information and a more comprehensive and authentic summative profile of their performances. Our discussion is illustrated with research-based examples of assessment practice in relation to three aspects of science education that are increasingly referred to in curriculum statements as desirable human dimensions of science: context-based science education, decision-making processes and socioscientific issues and integrated science education. We conclude with some notes on what these broader kinds of assessment mean for teachers and the support they would need to include them in their day-to-day practices in the science classrooms if, and when, the mainstream of science teaching and learning takes these curricular intentions seriously.
Resumo:
This paper reports on a Professional Learning Programme undertaken by primary school teachers in China that aimed to facilitate the development of ‘adaptive expertise’ in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education’s (2010–2020) education reforms. The study found that the participants made substantial progress towards the development of adaptive expertise manifested not only by advances in the participants’ repertoires of pedagogical content knowledge but also in changes to their levels of confidence and identities as teachers. By the end of the programme, the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science learning and assessment activities. The findings from the study indicate that those engaged in the development of Professional Learning Programmes in Asia-Pacific nations need to take cognizance of certain cultural factors and traditions idiosyncratic to the educational systems. This is reflected in the amended set of principles to inform the design and implementation of professional learning programmes presented in the concluding sections of the paper.
Resumo:
This paper reports on the initial phase of a Professional Learning Program (PLP) undertaken by 100 primary school teachers in China that aimed to facilitate the development of adaptive expertise in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education’s (2010-2020) education reforms. Key principles derived from literature about professional learning and scaffolding of learning informed the design of the PLP. The analysis of data revealed that the participants had made substantial progress towards the development of adaptive expertise. This was manifested not only by advances in the participants’ repertoires of Subject Matter Knowledge and Pedagogical Content Knowledge but also in changes to their levels of confidence and identities as teachers. By the end of the initial phase of the PLP, the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science learning and assessment activities. The findings from the study indicate that those engaged in the development of PLPs for teachers in China need to take cognizance of certain cultural factors and traditions idiosyncratic to the Chinese educational system. A set of revised principles is then presented to inform the future design and implementation of PLPs for teachers in China.
Resumo:
One method of addressing the shortage of science and mathematics teachers is to train scientists and other science-related professionals to become teachers. Advocates argue that as discipline experts these career changers can relate the subject matter knowledge to various contexts and applications in teaching. In this paper, through interviews and classroom observations with a former scientist and her students, we examine how one career changer used her expertise in microbiology to teach microscopy. These data provided the basis for a description of the teacher’s instruction which was then analysed for components of domain knowledge for teaching. Consistent with the literature, the findings revealed that this career changer needed to develop her pedagogical knowledge. However, an interesting finding was that the teacher’s subject matter as a science teacher differed substantively from her knowledge as a scientist. This finding challenges the assumption that subject matter is readily transferable across professions and provides insight into how to better prepare and support career changers to transition from scientist to science teacher.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
Perceptions of mentors' practices related to primary science teaching were obtained from final year preservice teachers after a 4-week practicum. Responses to a survey (n=59), constructed through literature-based practices and attributes of effective mentors, identified perceived strengths and weaknesses in the area of mentoring preservice teachers of primary science. Through exploratory factor analysis, this pilot study also tested the unidimensionality of mentoring practices and attributes assigned to categories (factors) that may characterise mentoring in primary science teaching. These suggested factors, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback had Cronbach alpha coefficients of internal consistency reliability of 0.93, 0.78, 0.94, 0.90, and 0.81 respectively. Survey responses indicated that mentors generally do not provide specific mentoring in primary science teaching. It is argued that science education reform requires the identification of factors and associated attributes and practices of mentoring primary science in order to effectively develop preservice teachers in primary science teaching.
Resumo:
Twenty-nine first-year pre-service teachers' perceptions of mentoring and primary science teaching were collected through a literature-based survey. Frequencies, means, and standard deviations of these responses provided data for analysis on these mentoring practices. Results indicated that even though mentors may provide feedback, the majority of mentors do not provide specific primary science mentoring in the areas of pedagogical knowledge, system requirements, and the modeling of teaching practice. It appears that the mentor's personal attributes may also influence the quality of mentoring. There were tentative conclusions that first-year pre-service teachers may not have strong beliefs about specific primary science mentoring practices, and possibly because of inexperience, may not be critical enough to analyse their mentoring in primary science teaching. Identifying specific mentoring for developing primary science teaching may assist mentors in their practices with pre-service teachers.
Resumo:
This paper is a qualitative, practice based study describing the use of the Focus-Action-Reflection (FAR) Guide (Harrison and Treagust, 2000) to address the shortcomings of a pedagogical analogical model in Year 10 Science. The aim of this paper is to present my experience of the FAR Guide in relation to an analogical model that gave rise to perceived shortcomings by both teachers and students. This study found the FAR Guide to be a highly valuable tool, transforming the presentation of the analogical model, and enabling students to develop a deeper understanding of the nature of scientific knowledge.
Resumo:
There are several good reasons why Earth and Space Science should be a part of any science curriculum. Nearly everything we do each day is connected in some way to the Earth: to its land, oceans, atmosphere, plants and animals. By 2025, eight billion people will live on Earth. If we are to continue extracting resources to maintain a high quality of life, then it is important that our children are scientifically literate in a way that allows them to exploit the Earth’s resources in a sustainable way. People who understand how earth systems work can make informed decisions and may be able to help resolve issues surrounding clean water, urban planning and development, global climate change and the use and management of natural resources.