991 resultados para data warehouse
Resumo:
Il lavoro presentato in questo elaborato tratterà lo sviluppo di un sistema di alerting che consenta di monitorare proattivamente una o più sorgenti dati aziendali, segnalando le eventuali condizioni di irregolarità rilevate; questo verrà incluso all'interno di sistemi già esistenti dedicati all'analisi dei dati e alla pianificazione, ovvero i cosiddetti Decision Support Systems. Un sistema di supporto alle decisioni è in grado di fornire chiare informazioni per tutta la gestione dell'impresa, misurandone le performance e fornendo proiezioni sugli andamenti futuri. Questi sistemi vengono catalogati all'interno del più ampio ambito della Business Intelligence, che sottintende l'insieme di metodologie in grado di trasformare i dati di business in informazioni utili al processo decisionale. L'intero lavoro di tesi è stato svolto durante un periodo di tirocinio svolto presso Iconsulting S.p.A., IT System Integrator bolognese specializzato principalmente nello sviluppo di progetti di Business Intelligence, Enterprise Data Warehouse e Corporate Performance Management. Il software che verrà illustrato in questo elaborato è stato realizzato per essere collocato all'interno di un contesto più ampio, per rispondere ai requisiti di un cliente multinazionale leader nel settore della telefonia mobile e fissa.
Resumo:
During the SINOPS project, an optimal state of the art simulation of the marine silicon cycle is attempted employing a biogeochemical ocean general circulation model (BOGCM) through three particular time steps relevant for global (paleo-) climate. In order to tune the model optimally, results of the simulations are compared to a comprehensive data set of 'real' observations. SINOPS' scientific data management ensures that data structure becomes homogeneous throughout the project. Practical work routine comprises systematic progress from data acquisition, through preparation, processing, quality check and archiving, up to the presentation of data to the scientific community. Meta-information and analytical data are mapped by an n-dimensional catalogue in order to itemize the analytical value and to serve as an unambiguous identifier. In practice, data management is carried out by means of the online-accessible information system PANGAEA, which offers a tool set comprising a data warehouse, Graphical Information System (GIS), 2-D plot, cross-section plot, etc. and whose multidimensional data model promotes scientific data mining. Besides scientific and technical aspects, this alliance between scientific project team and data management crew serves to integrate the participants and allows them to gain mutual respect and appreciation.
Resumo:
Pretende-se desenvolver um Data Warehouse para um grupo empresarial constituído por quatro empresas, tendo como objectivo primordial a consolidação de informação. A consolidação da informação é de extrema utilidade, uma vez que as empresas podem ter dados comuns, tais como, produtos ou clientes. O principal objectivo dos sistemas analíticos é permitir analisar os dados dos sistemas transacionais da organização, fazendo com que os utilizadores que nada percebem destes sistemas consigam ter apoio nas tomadas decisão de uma forma simples e eficaz. A utilização do Data Warehouse é útil no apoio a decisões, uma vez que torna os utilizadores autónomos na realização de análises. Os utilizadores deixam de estar dependentes de especialistas em informática para efectuar as suas consultas e passam a ser eles próprios a realizá-las. Por conseguinte, o tempo de execução de uma consulta através do Data Warehouse é de poucos segundos, ao contrário das consultas criadas anteriormente pelos especialistas que por vezes demoravam horas a ser executadas. __ ABSTRACT: lt is intended to develop a Data Warehouse for a business related group of four companies, having by main goal the information consolidation. This information consolidation is of extreme usefulness since the companies can have common data, such as products or customers. The main goal of the analytical systems is to allow analyze data from the organization transactional systems, making that the users that do not understand anything of these systems may have support in a simple and effective way in every process of taking decisions. Using the Data Warehouse is useful to support decisions, once it will allow users to become autonomous in carrying out analysis. Users will no longer depend on computer experts to make their own queries and they can do it themselves. Therefore, the time of a query through the Data Warehouse takes only a few seconds, unlike the earlier queries created previously by experts that sometimes took hours to run.
Resumo:
Una gestione, un’analisi e un’interpretazione efficienti dei big data possono cambiare il modello lavorativo, modificare i risultati, aumentare le produzioni, e possono aprire nuove strade per l’assistenza sanitaria moderna. L'obiettivo di questo studio è incentrato sulla costruzione di una dashboard interattiva di un nuovo modello e nuove prestazioni nell’ambito della Sanità territoriale. Lo scopo è quello di fornire al cliente una piattaforma di Data Visualization che mostra risultati utili relativi ai dati sanitari in modo da fornire agli utilizzatori sia informazioni descrittive che statistiche sulla attuale gestione delle cure e delle terapie somministrate. Si propone uno strumento che consente la navigazione dei dati analizzando l’andamento di un set di indicatori di fine vita calcolati a partire da pazienti oncologici della Regione Emilia Romagna in un arco temporale che va dal 2010 ad oggi.
Resumo:
BACKGROUND: The profile of blood donors changed dramatically in Brazil over the past 20 years, from remunerated to nonremunerated and then from replacement to community donors. Donor demographic data from three major blood centers establish current donation profiles in Brazil, serving as baseline for future analyses and tracking longitudinal changes in donor characteristics. STUDY DESIGN AND METHODS: Data were extracted from the blood center, compiled in a data warehouse, and analyzed. Population data were obtained from the Brazilian census. RESULTS: During 2007 to 2008, there were 615,379 blood donations from 410,423 donors. A total of 426,142 (69.2%) were from repeat (Rpt) donors and 189,237 (30.8%) were from first-time (FT) donors. Twenty percent of FT donors returned to donate in the period. FT donors were more likely to be younger, and Rpt donors were more likely to be community donors. All were predominantly male. Replacement donors still represent 50% of FT and 30% of Rpt donors. The mean percentage of the potentially general population who were donors was approximately 1.2% for the three centers (0.7, 1.5, and 3.1%). Adjusting for the catchment`s area, the first two were 2.1 and 1.6%. CONCLUSIONS: Donors in the three Brazilian centers tended to be younger with a higher proportion of males than in the general population. Donation rates were lower than desirable. There were substantial differences in sex, age, and community/replacement status by center. Studies on the safety, donation frequencies, and motivations of donors are in progress to orient efforts to enhance the availability of blood.
Resumo:
A data warehouse is a data repository which collects and maintains a large amount of data from multiple distributed, autonomous and possibly heterogeneous data sources. Often the data is stored in the form of materialized views in order to provide fast access to the integrated data. One of the most important decisions in designing a data warehouse is the selection of views for materialization. The objective is to select an appropriate set of views that minimizes the total query response time with the constraint that the total maintenance time for these materialized views is within a given bound. This view selection problem is totally different from the view selection problem under the disk space constraint. In this paper the view selection problem under the maintenance time constraint is investigated. Two efficient, heuristic algorithms for the problem are proposed. The key to devising the proposed algorithms is to define good heuristic functions and to reduce the problem to some well-solved optimization problems. As a result, an approximate solution of the known optimization problem will give a feasible solution of the original problem. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
No início da década de 90, as empresas começaram a sentir a necessidade de melhorar o acesso à informação das suas actividades para auxiliar na tomada de decisões. Desta forma, no mundo da informática, emergiu o sector Business Intelligence (BI) composto inicialmente por data warehousing e ferramentas de geração de relatórios. Ao longo dos anos o conceito de BI evoluiu de acordo com as necessidades empresariais, tornando a análise das actividades e do desempenho das organizações em aspectos críticos na gestão das mesmas. A área de BI abrange diversos sectores, sendo o de geração de relatórios e o de análise de dados aqueles que melhor preenchem os requisitos pretendidos no controlo de acesso à informação do negócio e respectivos processos. Actualmente o tempo e a informação são vantagens competitivas e por esse mesmo motivo as empresas estão cada vez mais preocupadas com o facto de o aumento do volume de informação estar a tornar-se insustentável na medida que o tempo necessário para processar a informação é cada vez maior. Por esta razão muitas empresas de software, tais como Microsoft, IBM e Oracle estão numa luta por um lugar neste mercado de BI em expansão. Para que as empresas possam ser competitivas, a sua capacidade de previsão e resposta às necessidades de mercado em tempo real é requisito principal, em detrimento da existência apenas de uma reacção a uma necessidade que peca por tardia. Os produtos de BI têm fama de trabalharem apenas com dados históricos armazenados, o que faz com que as empresas não se possam basear nessas soluções quando o requisito de alguns negócios é de tempo quase real. A latência introduzida por um data warehouse é demasiada para que o desempenho seja aceitável. Desta forma, surge a tecnologia Business Activity Monitoring (BAM) que fornece análise de dados e alertas em tempo quase real sobre os processos do negócio, utilizando fontes de dados como Web Services, filas de mensagens, etc. O conceito de BAM surgiu em Julho de 2001 pela organização Gartner, sendo uma extensão orientada a eventos da área de BI. O BAM define-se pelo acesso em tempo real aos indicadores de desempenho de negócios com o intuito de aumentar a velocidade e eficácia dos processos de negócio. As soluções BAM estão a tornar-se cada vez mais comuns e sofisticadas.
Resumo:
Projecto para obtenção do grau de Mestre em Engenharia Informática e de computadores
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Na atualidade, existe uma quantidade de dados criados diariamente que ultrapassam em muito as mais otimistas espectativas estabelecidas na década anterior. Estes dados têm origens bastante diversas e apresentam-se sobre várias formas. Este novo conceito que dá pelo nome de Big Data está a colocar novos e rebuscados desafios ao seu armazenamento, tratamento e manipulação. Os tradicionais sistemas de armazenamento não se apresentam como a solução indicada para este problema. Estes desafios são alguns dos mais analisados e dissertados temas informáticos do momento. Várias tecnologias têm emergido com esta nova era, das quais se salienta um novo paradigma de armazenamento, o movimento NoSQL. Esta nova filosofia de armazenamento visa responder às necessidades de armazenamento e processamento destes volumosos e heterogéneos dados. Os armazéns de dados são um dos componentes mais importantes do âmbito Business Intelligence e são, maioritariamente, utilizados como uma ferramenta de apoio aos processos de tomada decisão, levados a cabo no dia-a-dia de uma organização. A sua componente histórica implica que grandes volumes de dados sejam armazenados, tratados e analisados tendo por base os seus repositórios. Algumas organizações começam a ter problemas para gerir e armazenar estes grandes volumes de informação. Esse facto deve-se, em grande parte, à estrutura de armazenamento que lhes serve de base. Os sistemas de gestão de bases de dados relacionais são, há algumas décadas, considerados como o método primordial de armazenamento de informação num armazém de dados. De facto, estes sistemas começam a não se mostrar capazes de armazenar e gerir os dados operacionais das organizações, sendo consequentemente cada vez menos recomendada a sua utilização em armazéns de dados. É intrinsecamente interessante o pensamento de que as bases de dados relacionais começam a perder a luta contra o volume de dados, numa altura em que um novo paradigma de armazenamento surge, exatamente com o intuito de dominar o grande volume inerente aos dados Big Data. Ainda é mais interessante o pensamento de que, possivelmente, estes novos sistemas NoSQL podem trazer vantagens para o mundo dos armazéns de dados. Assim, neste trabalho de mestrado, irá ser estudada a viabilidade e as implicações da adoção de bases de dados NoSQL, no contexto de armazéns de dados, em comparação com a abordagem tradicional, implementada sobre sistemas relacionais. Para alcançar esta tarefa, vários estudos foram operados tendo por base o sistema relacional SQL Server 2014 e os sistemas NoSQL, MongoDB e Cassandra. Várias etapas do processo de desenho e implementação de um armazém de dados foram comparadas entre os três sistemas, sendo que três armazéns de dados distintos foram criados tendo por base cada um dos sistemas. Toda a investigação realizada neste trabalho culmina no confronto da performance de consultas, realizadas nos três sistemas.
Resumo:
O presente documento de dissertação retrata o desenvolvimento do projeto PDS-Portal Institucional cujo cerne é um sistema para recolha, armazenamento e análise de dados (plataforma de Business Intelligence). Este portal está enquadrado na área da saúde e é uma peça fundamental no sistema da Plataforma de dados da Saúde, que é constituído por quatro portais distintos. Esta plataforma tem como base um sistema totalmente centrado no utente, que agrega dados de saúde dos utentes e distribui pelos diversos intervenientes: utente, profissionais de saúde nacionais e internacionais e organizações de saúde. O objetivo principal deste projeto é o desenvolvimento do PDS-Portal Institucional, recorrendo a uma plataforma de Business Intelligence, com o intuito de potenciar os utilizadores de uma ferramenta analítica para análise de dados. Estando a informação armazenada em dois dos portais da Plataforma de dados da Saúde (PDS-Portal Utente e PDS-Portal Profissional), é necessário modular um armazém de dados que agregue a informação de ambos e, através do PDS-PI, distribua um conjunto de análises ao utilizador final. Para tal este sistema comtempla um mecanismo totalmente automatizado para extração, tratamento e carregamento de dados para o armazém central, assim como uma plataforma de BI que disponibiliza os dados armazenados sobre a forma de análises específicas. Esta plataforma permite uma evolução constante e é extremamente flexível, pois fornece um mecanismo de gestão de utilizadores e perfis, assim como capacita o utilizador de um ambiente Web para análise de dados, permitindo a partilha e acesso a partir de dispositivos móveis. Após a implementação deste sistema foi possível explorar os dados e tirar diversas conclusões que são de extrema importância tanto para a evolução da PDS como para os métodos de praticar os cuidados de saúde em Portugal. Por fim são identificados alguns pontos de melhoria do sistema atual e delineada uma perspetiva de evolução futura. É certo que a partir do momento que este projeto seja lançado para produção, novas oportunidades surgirão e o contributo dos utilizadores será útil para evoluir o sistema progressivamente.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Vivemos cada vez mais numa era de crescentes avanços tecnológicos em diversas áreas. O que há uns anos atrás era considerado como praticamente impossível, em muitos dos casos, já se tornou realidade. Todos usamos tecnologias como, por exemplo, a Internet, Smartphones e GPSs de uma forma natural. Esta proliferação da tecnologia permitiu tanto ao cidadão comum como a organizações a sua utilização de uma forma cada vez mais criativa e simples de utilizar. Além disso, a cada dia que passa surgem novos negócios e startups, o que demonstra o dinamismo que este crescimento veio trazer para a indústria. A presente dissertação incide sobre duas áreas em forte crescimento: Reconhecimento Facial e Business Intelligence (BI), assim como a respetiva combinação das duas com o objetivo de ser criado um novo módulo para um produto já existente. Tratando-se de duas áreas distintas, é primeiramente feito um estudo sobre cada uma delas. A área de Business Intelligence é vocacionada para organizações e trata da recolha de informação sobre o negócio de determinada empresa, seguindo-se de uma posterior análise. A grande finalidade da área de Business Intelligence é servir como forma de apoio ao processo de tomada de decisão por parte dos analistas e gestores destas organizações. O Reconhecimento Facial, por sua vez, encontra-se mais presente na sociedade. Tendo surgido no passado através da ficção científica, cada vez mais empresas implementam esta tecnologia que tem evoluído ao longo dos anos, chegando mesmo a ser usada pelo consumidor final, como por exemplo em Smartphones. As suas aplicações são, portanto, bastante diversas, desde soluções de segurança até simples entretenimento. Para estas duas áreas será assim feito um estudo com base numa pesquisa de publicações de autores da respetiva área. Desde os cenários de utilização, até aspetos mais específicos de cada uma destas áreas, será assim transmitido este conhecimento para o leitor, o que permitirá uma maior compreensão por parte deste nos aspetos relativos ao desenvolvimento da solução. Com o estudo destas duas áreas efetuado, é então feita uma contextualização do problema em relação à área de atuação da empresa e quais as abordagens possíveis. É também descrito todo o processo de análise e conceção, assim como o próprio desenvolvimento numa vertente mais técnica da solução implementada. Por fim, são apresentados alguns exemplos de resultados obtidos já após a implementação da solução.
Resumo:
É possível assistir nos dias de hoje, a um processo tecnológico evolutivo acentuado por toda a parte do globo. No caso das empresas, quer as pequenas, médias ou de grandes dimensões, estão cada vez mais dependentes dos sistemas informatizados para realizar os seus processos de negócio, e consequentemente à geração de informação referente aos negócios e onde, muitas das vezes, os dados não têm qualquer relacionamento entre si. A maioria dos sistemas convencionais informáticos não são projetados para gerir e armazenar informações estratégicas, impossibilitando assim que esta sirva de apoio como recurso estratégico. Portanto, as decisões são tomadas com base na experiência dos administradores, quando poderiam serem baseadas em factos históricos armazenados pelos diversos sistemas. Genericamente, as organizações possuem muitos dados, mas na maioria dos casos extraem pouca informação, o que é um problema em termos de mercados competitivos. Como as organizações procuram evoluir e superar a concorrência nas tomadas de decisão, surge neste contexto o termo Business Intelligence(BI). A GisGeo Information Systems é uma empresa que desenvolve software baseado em SIG (sistemas de informação geográfica) recorrendo a uma filosofia de ferramentas open-source. O seu principal produto baseia-se na localização geográfica dos vários tipos de viaturas, na recolha de dados, e consequentemente a sua análise (quilómetros percorridos, duração de uma viagem entre dois pontos definidos, consumo de combustível, etc.). Neste âmbito surge o tema deste projeto que tem objetivo de dar uma perspetiva diferente aos dados existentes, cruzando os conceitos BI com o sistema implementado na empresa de acordo com a sua filosofia. Neste projeto são abordados alguns dos conceitos mais importantes adjacentes a BI como, por exemplo, modelo dimensional, data Warehouse, o processo ETL e OLAP, seguindo a metodologia de Ralph Kimball. São também estudadas algumas das principais ferramentas open-source existentes no mercado, assim como quais as suas vantagens/desvantagens relativamente entre elas. Em conclusão, é então apresentada a solução desenvolvida de acordo com os critérios enumerados pela empresa como prova de conceito da aplicabilidade da área Business Intelligence ao ramo de Sistemas de informação Geográfica (SIG), recorrendo a uma ferramenta open-source que suporte visualização dos dados através de dashboards.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação