960 resultados para Perfect


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exhibition investigates the unrepresentable and considers the distinct ways invisible forces can be given visual manifestation through painted images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a scheme for quasi-perfect state transfer in a network of dissipative harmonic oscillators. We consider ideal sender and receiver oscillators connected by a chain of nonideal transmitter oscillators coupled by nearest-neighbour resonances. From the algebraic properties of the dynamical quantities describing the evolution of the network state, we derive a criterion, fixing the coupling strengths between all the oscillators, apart from their natural frequencies, enabling perfect state transfer in the particular case of ideal transmitter oscillators. Our criterion provides an easily manipulated formula enabling perfect state transfer in the special case where the network nonidealities are disregarded. We also extend such a criterion to dissipative networks where the fidelity of the transferred state decreases due to the loss mechanisms. To circumvent almost completely the adverse effect of decoherence, we propose a protocol to achieve quasi-perfect state transfer in nonideal networks. By adjusting the common frequency of the sender and the receiver oscillators to be out of resonance with that of the transmitters, we demonstrate that the sender`s state tunnels to the receiver oscillator by virtually exciting the nonideal transmitter chain. This virtual process makes negligible the decay rate associated with the transmitter line at the expense of delaying the time interval for the state transfer process. Apart from our analytical results, numerical computations are presented to illustrate our protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prosodic /template Morphology, that "draws heavily on the theoretical apparatus and formalisms of the generative phonology model known as autosegmental phonology" (Katamba, F. 1993: 154), is the best analysis that can handle Arabic morphology. Verbs in Arabic are represented on three independent tiers: root tier, the skeletal tier and the vocalic melody tier (Katamba, F. 1993). Vowel morphemes, which are represented by diacritics, are inserted within the consonant morphemes, which are represented by primary symbols, to form words. The morpheme tier hypothesis paves the way to understand the nonconcatenative Arabic morphology. This paper analyzes gender in perfect active and passive 3rd person singular verbs on the basis of PM. The focus of the analysis shall be drawn heavily on the most common Arabic verbs; triconsonantal verbs, with brief introduction of the less common verbs; quadriconsonantal perfect active and passive masculine and feminine 3rd person singular verbs. I shall, too, cast the light on some vowel changes that some verbs undergo when voice changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that Judd (1982)’s method can be applied to any finite system, contrary to what he claimed in 1987. An example shows how to employ the technic to study monetary models in presence of capital accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game .