A notion of subgame perfect nash equilibrium under knightian uncertainty


Autoria(s): Werlang, Sérgio Ribeiro da Costa
Data(s)

10/11/2014

10/11/2014

09/10/1997

Resumo

We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game .

Identificador

http://hdl.handle.net/10438/12366

Idioma(s)

en_US

Publicador

Escola de Pós-Graduação em Economia da FGV

Relação

Seminários de pesquisa econômica da EPGE

Direitos

Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveis.

Palavras-Chave #Economia - Modelos estatísticos
Tipo

Working Paper