889 resultados para Matemática, especialidade de Análise Matemática
Resumo:
Este livro destina-se às/aos estudantes das várias disciplinas de introdução à matemática nos cursos superiores que incluem algum conteúdo matemático, mas sem prosseguirem para uma formação aprofundada nesta disciplina. Aprender é difícil. No caso particular da matemática essa dificuldade está principalmente na sua natureza estritamente abstrata, embora seja aumentada por um conjunto de factores materiais e culturais (que incluem a infame pergunta/desculpa "mas afinal, para que é que isto serve?" e más práticas como "deixar as matemáticas para o fim do curso"). Com este livro pretendemos ajudar a reduzir as dificuldades materiais e, portanto, contingentes mas desnecessárias que assombram a aprendizagem da Matemática. A nossa experiência como professores (em conjunto, mais de sessenta anos) precisamente para estes estudantes, nestes cursos, produziu uma atitude pragmática para este tipo específico de ensino: o conteúdo deve ser comunicado claramente, rigorosamente e em pequenas doses concretizadas abundantemente com exemplos e exercícios. Ao longo dos anos, conforme fomos refinando esta abordagem, também fomos observando os seus efeitos: os nossos estudantes aprendem melhor a matéria, de forma mais aprofundada e com melhores resultados. É esse pragmatismo que orienta o conteúdo da "Introdução à Matemática": a apresentação dos conceitos teóricos é sucinta, rigorosa, está claramente identificada, acompanhada por exemplos e complementada por inúmeros exercícios. Cada parte do livro corresponde a uma das grandes áreas da matemática normalmente presentes no ensino superior: a álgebra linear, a análise infinitesimal e a otimização.
Resumo:
A presente dissertação propõe uma abordagem alternativa na simulação matemática de um cenário preocupante em ecologia: o controle de pragas nocivas a uma dada lavoura de soja em uma específica região geográfica. O instrumental teórico empregado é a teoria dos jogos, de forma a acoplar ferramentas da matemática discreta à análise e solução de problemas de valor inicial em equações diferenciais, mais especificamente, as chamadas equações de dinâmica populacional de Lotka-Volterra com competição. Essas equações, que modelam o comportamento predador-presa, possuem, com os parâmetros inicialmente utilizados, um ponto de equilíbrio mais alto que o desejado no contexto agrícola sob exame, resultando na necessidade de utilização da teoria do controle ótimo. O esquema desenvolvido neste trabalho conduz a ferramentas suficientemente simples, de forma a tornar viável o seu uso em situações reais. Os dados utilizados para o tratamento do problema que conduziu a esta pesquisa interdisciplinar foram coletados de material bibliográfico da Empresa Brasileira de Pesquisa Agropecuária EMBRAPA.
Resumo:
O conceito de objetividade é central na epistemologia de Gaston Bachelard (1884-1962). O problema que a pesquisa busca solucionar é a definição de objetividade na filosofia bachelardiana, o que implica na necessidade de explicitar a relação entre a objetividade e a matemática. A partir da leitura e da análise da obra epistemológica de Bachelard que trata da questão da objetividade, é demonstrado que o filósofo utiliza dois diferentes conceitos de objetividade: o primeiro é o de objetividade como reconhecimento e afastamento dos obstáculos epistemológicos que se apresentam como imagens subjetivas na prática científica; o segundo conceito é o de objetividade como o processo de retificação do conhecimento científico. Apresenta-se um exemplo de objetivação: o conceito de substância, no sentido realista ingênuo, desaparece nas ciências físicas do século XX, e surge o conceito complexo de um átomo não substancial, mas matemático. A partir desse exemplo, é demonstrado que, para Bachelard, o processo de objetivação do conhecimento é sincrônico ao processo de matematização do objeto. e a razão para essa relação entre a matematização e a objetivação é explicada.
Resumo:
No presente trabalho foram utilizados modelos de classificação para minerar dados relacionados à aprendizagem de Matemática e ao perfil de professores do ensino fundamental. Mais especificamente, foram abordados os fatores referentes aos educadores do Estado do Rio de Janeiro que influenciam positivamente e negativamente no desempenho dos alunos do 9 ano do ensino básico nas provas de Matemática. Os dados utilizados para extrair estas informações são disponibilizados pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira que avalia o sistema educacional brasileiro em diversos níveis e modalidades de ensino, incluindo a Educação Básica, cuja avaliação, que foi foco deste estudo, é realizada pela Prova Brasil. A partir desta base, foi aplicado o processo de Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós-processamento dos dados. Os padrões foram extraídos dos modelos de classificação gerados pelas técnicas árvore de decisão, indução de regras e classificadores Bayesianos, cujos algoritmos estão implementados no software Weka (Waikato Environment for Knowledge Analysis). Além disso, foram aplicados métodos de grupos e uma metodologia para tornar as classes uniformemente distribuídas, afim de melhorar a precisão dos modelos obtidos. Os resultados apresentaram importantes fatores que contribuem para o ensino-aprendizagem de Matemática, assim como evidenciaram aspectos que comprometem negativamente o desempenho dos discentes. Por fim, os resultados extraídos fornecem ao educador e elaborador de políticas públicas fatores para uma análise que os auxiliem em posteriores tomadas de decisão.
Resumo:
Esta pesquisa realiza um estudo sobre a formação de professores em Física, Química e Matemática na dimensão das políticas públicas educacionais e das novas ordenações do mundo produtivo. O eixo metodológico investe na abordagem qualitativa, elegendo como campo empírico o Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), mais especificamente, o campus Nilópolis, localizado na região da Baixada Fluminense (recorte geopolítico), no Estado do Rio de Janeiro. A técnica de pesquisa baseou-se na realização de entrevistas com licenciandos cujo perfil compreende àquele que tenha realizado atividades de estágio docente. Esta escolha justifica-se por ser este o perfil de estudante mais próximo do término do curso e que, principalmente, através desta experiência, apresenta concepções, ainda que iniciais, da realidade da educação básica. Este estudo investiu na história dos sujeitos participantes através de seus respectivos relatos, onde foi possível categorizá-los em importantes aspectos que se interconectam: 1) na análise das políticas públicas para a educação superior a partir da ênfase na investigação de como estas se efetivam em uma territorialidade e no contexto de uma nova institucionalidade; 2) na reflexão sobre o impacto das transformações do mundo do trabalho na subjetividade dos licenciandos, engendrando a possível atividade docente no cenário de crise de identidades profissionais; e 3) no exame da realidade das escolas da educação básica, espaço onde a formação se destina. Este caminho permitiu refletir sobre o lugar do magistério nas escolhas de formação e nas perspectivas profissionais.
Resumo:
Este artigo apresenta resultados parciais de uma investigação de doutorado referente à busca de temas adequados aos interesses dos alunos, que estejam em sintonia com a vida moderna e que possibilitem desenvolver conteúdos matemáticos para o Currículo de Matemática, no Ensino Médio. Apresenta-se a história desta etapa da Educação Básica, no Brasil, visando uma compreensão do todo que possibilite identificar temas já trabalhados ou desenvolvidos no Currículo de Matemática. O objetivo desta pesquisa é investigar quais seriam os possíveis temas a serem trabalhados, no Ensino Médio, que alie conteúdos matemáticos e temas de interesse. A metodologia de pesquisa apresenta uma abordagem qualitativa, pois permite que o pesquisador valide a pesquisa através da análise e descrição dos dados coletados pelo pesquisador. Um exemplo de tema a ser explorado, é a Criptografia, pois permite desenvolver conceitos matemáticos em atividades de codificação e decodificação, proporcionando o trabalho em grupo, a criação de estratégias de resolução de situações problemas e a recontextualização dos conteúdos envolvidos no tema abordado.
Resumo:
Com o presente trabalho buscou-se articular saberes de Matemática e Biologia presentes no Ensino Médio brasileiro. Na tessitura teórica, destacaram-se Morin (conhecimento como elaboração complexa), Machado (as redes de saberes) e Lévy (metáfora do hipertexto). Consideramos como eixos para a pesquisa: 1) Possibilitar ações didáticas envolvendo de forma complexa Biologia e Matemática; 2) Biologia e Matemática como objetos de atuação do professor e instrumentos para o estudante elaborar conhecimento. A análise dos resultados permitiu a identificação de duas categorias de integração entre Biologia e Matemática no Ensino Médio: 1) instrumentos matemáticos utilizados para descrever fenômenos biológicos; 2) a Matemática utilizada para a resolução de problemas da Biologia. O trabalho apresenta-se como estudo teórico que apontou temas dos ensinos de Biologia e Matemática no Ensino Médio favorecedores de articulações e ampliação do alcance didático dessas disciplinas no Nível Médio de ensino.
Resumo:
Destacam-se, neste artigo, resultados parciais de um trabalho que se constitui em uma investigação sobre o significado da contextualização do âmbito da Matemática, do seu ensino e aprendizagem, considerando o currículo de Matemática no Ensino Médio, tendo como foco de análise a matriz de competências do Exame Nacional do Ensino Médio (ENEM) e as provas de Matemática desse exame. A investigação está sendo desenvolvida em uma perspectiva qualitativa, estando focada, no momento, na realização de uma análise crítico reflexiva das questões de Matemática e suas Tecnologias das provas do ENEM de 2009 e 2010, com o objetivo de identificar as competências e habilidades requeridas na solução das questões, bem como os conteúdos e contextos a que se referem.
Resumo:
Este trabalho apresenta resultados parciais da pesquisa de Doutorado em Ensino de Ciências e Matemática da Universidade Luterana do Brasil que está em andamento. Nesta investigação é proposto um estudo sobre o comprometimento dos alunos no processo de aprendizagem em Matemática. Objetivando determinar os prováveis fatores que permeiam este comprometimento aplicou-se um questionário a 128 alunos de cinco turmas do 3° ano do Ensino Médio de uma escola federal de Porto Alegre - Rio Grande do Sul - Brasil. Este instrumento se constituiu de um primeiro bloco, denominado Perfil, com propósito de elaborar o perfil dos alunos, um segundo, chamado Aprendizagem, buscando informações sobre o processo de aprendizagem em matemática e um terceiro intitulado, Dominio Afetivo, dados sobre os sentimentos expressados em relação à matematica. Com a análise estatística das respostas, pode-se compreender melhor este comprometimento e traçar alguns indicativos que influem na aprendizagem em Matemática destes discentes.
Resumo:
Essa comunicação apresenta uma pesquisa em desenvolvimento que busca investigar o currículo de Matemática das escolas estaduais de Ensino Médio do Estado do Rio Grande do Sul, sob a ótica das representações semióticas como possibilidade teórica, didática e metodológica para o desenvolvimento dos conhecimentos e procedimentos matemáticos que fazem parte desse nível de escolaridade. No presente momento, a investigação de cunho qualitativo está centrada na análise do currículo de Ensino Médio e nos projetos pedagógicos das escolas pertencentes à área de abrangência da pesquisa. Também fazem parte do estudo as avaliações nacionais propostas para os egressos do Ensino Médio. Resultados preliminares apontam a necessidade de se trabalhar com “outras representações”, principalmente quando os documentos analisados consideram a resolução de problemas como princípio para a organização das atividades escolares, o que, entende-se, indica uma abertura para o trabalho com semiótica na matemática escolar do Ensino Médio.
Resumo:
Descrição e análise de projeto de construção e preparação da exploração de tarefas de modelação matemática em estatística: uma experiência no ensino profissional.
Resumo:
Este trabalho debruça-se sobre as práticas de Ensino de Geometria no 3º ciclo do Ensino Básico tendo como principal foco de investigação as práticas de ensino da professora investigadora. O estudo empírico foi realizado em três turmas de 9º ano, da professora investigadora, de Abril a Junho de 2005, numa Escola da região de Trás-os-Montes (designada por Escola A). O trabalho realizado pela professora investigadora com alunos dessas turmas (no 7º em 2002/03, no 8º ano em 2003/04 e no 9º ano até Abril de 2005) constituiu o contexto precursor do estudo. O planeamento, desenvolvimento e reflexão sobre as práticas desenvolvidas foram realizados de forma colaborativa entre a professora investigadora e a critical friend, professora de Matemática a leccionar Matemática a turmas de 9º ano, numa outra Escola, da mesma região de Trás-os-Montes (designada por Escola B). A gestão curricular orientada por pressupostos legais em vigor e por resultados da investigação em Educação e Didáctica da Matemática foi realizada considerando o conhecimento informal e tácito de cada aluno; visou maximizar a aprendizagem matemática de todos os alunos em cada turma mas tendo a preocupação subjacente de proporcionar experiências de aprendizagem diversificadas de forma a favorecer todo o tipo de estilos de aprendizagem. O problema de investigação foi formulado a partir da seguinte questão: Como articular os esforços realizados e desenvolvidos pelo professor na sala de aula, de forma coerente e exequível, para promover aprendizagens significativas nos alunos, nomeadamente no domínio da Geometria? Face ao problema de investigação foram abordadas e estudadas as questões de investigação seguintes: 1. Quais são as características da experiência matemática proporcionada e qual é a sua relação com o que os alunos aprenderam? 2. Quais as características da avaliação implementada enquanto processo regulador das aprendizagens? 3. Qual a relação entre as tarefas de aprendizagem planificadas e as experiências de aprendizagem matemática proporcionadas? 4. Qual o papel das conferências com a critical friend (no desenvolvimento das experiências matemáticas proporcionadas) na gestão curricular? Este trabalho seguiu uma metodologia de investigação de natureza qualitativa baseado num estudo de caso, com uma vertente de investigação-acção, a partir de uma abordagem curricular em Geometria no 3º ciclo do Ensino Básico: a da professora investigadora. A observação participante e uma grande diversidade de documentos recolhidos (tarefas iniciais e reformuladas, cópias de relatórios, diários de bordo, transcrições das gravações áudio das conferências, etc.) constituíram as principais fontes de dados. Também foram considerados dados provenientes de instrumentos mais quantitativos, como de testes e de questionários. A análise de dados tomou como base a unidade de tempo de meio bloco de aulas (45 minutos) e as fases didácticas de realização de tarefas numa escala de investigação meso de forma a respeitar o trabalho na sala de aula e a sua complexidade. A triangulação de diversas fontes de dados permitiu apresentar: i) a experiência matemática proporcionada a partir das tarefas implementadas e os diferentes papéis assumidos pelo professor, pelos pequenos grupos de alunos ou pelo grupo turma; ii) as práticas avaliativas onde foram evidenciadas as diferentes formas de avaliação formativa e o feedback distribuído; iii) o envolvimento induzido e promovido nos alunos relativamente à sua aprendizagem matemática; iv) o papel crucial da critical friend na abordagem curricular em foco. A partir dos testes de competências e do questionário acerca do ensino, da avaliação e do modo de estudar dos alunos (QEAME) foi possível identificar os ganhos e o impacte desta abordagem curricular no desenvolvimento dos três tipos de constelações de competências e as percepções dos alunos relativamente à mediação realizada pela professora investigadora relativamente ao ensino, aprendizagem e métodos de estudo, respectivamente; a Listagem Dinâmica de Perguntas permitiu aumentar a consciência acerca dos itens trabalhados em sala de aula. A principal conclusão deste estudo é de que é possível implementar um currículo que desenvolva e favoreça a aquisição e desenvolvimento de competências na Geometria (desde as mais elementares até às de nível superior – nas diferentes constelações de reprodução, de conexão e de reflexão) onde o trabalho colaborativo entre os professores é fundamental na gestão e desenvolvimento curriculares. Como implicações para a investigação educacional em matemática surge a necessidade de se fomentar estudos investigacionais descritivos e holísticos em salas de aulas normais sobre as opções e razões das práticas de ensino, das actividades de aprendizagem e das diferentes formas de avaliação.
Resumo:
O contexto educacional exige renovação de paradigmas. Impõem-se profundas alterações ao nível do papel e da função do professor e dos alunos, devendo-se privilegiar metodologias de aprendizagem ativas, cooperativas e participativas, rompendo-se com o ensino magistral e a mera transmissão de ‘conhecimentos’. As ferramentas informáticas poderão constituir-se uma mais-valia no contexto educativo, promovendo uma aprendizagem significativa e autorregulada pelo aluno, sempre sob a adequada orientação do professor. Neste contexto, foi criado, na Universidade de Aveiro, o Projeto Matemática Ensino (PmatE), com o principal objetivo de combater, de uma forma inovadora, as causas do insucesso escolar a matemática. No entanto, tal plataforma ainda não foi alvo de uma avaliação sistemática, nomeadamente ao nível do ensino superior, que nos permita concluir da consecução dos seus propósitos. Assim, a questão de investigação subjacente ao estudo em curso é - Qual o impacte da utilização diferenciada, como complemento à abordagem didáctica, da plataforma de ensino assistido (PEA) desenvolvida pelo PmatE na aprendizagem de temas matemáticos ao nível do Ensino Superior, principalmente ao nível da autonomia, da construção e aplicação de conhecimentos e do desenvolvimento de apetências pela Matemática. Para se tentar dar resposta à mesma, implementou-se um estudo misto, quantitativo e qualitativo, com alunos da unidade curricular Análise Matemática I do Curso Engenharia Alimentar de um Instituto Politécnico português, a quem se propôs uma exploração prévia da plataforma extra-aula para que, nesse espaço, se pudesse conceptualizar os conceitos envolvidos e realizar tarefas variadas quanto à sua natureza. Usaram-se como principais técnicas de recolha de dados a análise documental, a inquirição e a observação direta, suportadas pelos diversos instrumentos: Questionário Inicial e Final; testes de avaliação, nas versões pré-teste, pós-teste1 e pós-teste2; produções de uma bateria de tarefas de natureza diversificada; registo computorizado do percurso dos alunos relativamente ao trabalho por eles desenvolvido na plataforma do PmatE; notas de campo; dossier dos alunos e entrevistas. Os resultados obtidos, a partir de uma análise estatística dos dados quantitativos e de conteúdo dos dados qualitativos, indicam, por um lado, que os alunos mais autónomos, mais persistentes e que obtêm os melhores resultados são os alunos que usaram a plataforma com frequência e, por outro, que a utilização da plataforma contribuiu para aumentar o gosto pela Matemática. Este estudo permitiu, também, obter informação importante sobre aspetos que poderão melhorar a plataforma, em particular, relativos à natureza das tarefas e à resolução dos exercícios propostos.
Resumo:
Novas abordagens educacionais têm vindo a surgir como resultado de mudanças económicas, sociais e políticas, que levaram, a nível europeu ao desenvolvimento do Processo de Bolonha. As instituições de ensino superior enfrentam, assim, novos desafios e oportunidades, nomeadamente, o desenvolvimento de contextos educativos mais centrados nas aprendizagens dos alunos, promotores de cidadãos mais autónomos, mais ativos e mais provocadores, capazes de responderem às exigências da Sociedade do Conhecimento global. Diversos estudos apontam a importância de ambientes online na persecução desses objetivos, designadamente na área da Matemática. Neste contexto, desenvolveu-se a plataforma online – M@t-educar com Sucesso – que, a partir da informação teórica, permite a resolução de tarefas interativas, algumas delas contendo animações, das quais se fornece um feedback imediato, a qual carece de avaliação. Assim, este estudo tem como objetivo principal avaliar a influência da exploração prévia às aulas da referida plataforma no desenvolvimento de conhecimentos e capacidades matemáticas, da autonomia e do interesse por essa área em estudantes do ensino superior. O estudo ocorreu na unidade curricular de Cálculo Infinitesimal do Curso Superior de Gestão de uma instituição do ensino superior. Metodologicamente, optou-se por uma abordagem mista de investigação e pelo design de estudo de caso, tendo-se partido de uma análise macro, envolvendo todos os alunos de Cálculo Infinitesimal, seguida de uma análise meso, considerando os alunos da turma da professora/investigadora, que foi evoluindo para uma análise micro, estudando cinco casos da turma. Para tal, utilizaram-se diversas técnicas de recolha de dados – inquirição, observação e análise documental, suportadas por variados instrumentos. A análise estatística e de conteúdo a que os dados foram submetidos permite concluir que a exploração prévia dos conteúdos através desta plataforma contribui para o desenvolvimento, principalmente, de autonomia e da capacidade de aplicação de conhecimento produzido à resolução de tarefas de diversa natureza.
Resumo:
Esta dissertação descreve o processo de integração dos matemáticos portugueses na comunidade matemática internacional no final do século XIX e início do século XX, focando-se na vida e obra do matemático Francisco Gomes Teixeira (1851-1933). Tenciona a ser mais um contributo para o reconhecimento nacional e internacional do matemático Gomes Teixeira analisando a sua obra como matemático e organizador científico em Portugal através de fontes, parcialmente ainda não conhecidas. Para esse efeito analisou-se a evolução histórica que ocorreu no mundo científico daquela época, em particular a formação da comunidade matemática através de iniciativas individuais ou coletivas, muitas vezes acompanhadas pela fundação de revistas e elaboração de manuais que contribuíram para a internacionalização e, de certa forma, para uma estandardização do estudo universitário básico. Em particular foi estudada a situação em Portugal, onde o papel de liderança foi assumido por Gomes Teixeira. Mostra-se como Gomes Teixeira, graças ao seu trabalho, ao seu talento como matemático e à sua atividade como organizador académico, conseguiu reduzir significativamente o isolamento científico de Portugal na área da matemática. Estudou-se em extensão a fundação de revistas científicas em diferentes países, acompanhando a sua evolução desde de revistas nacionais até revistas internacionais. Focando-nos no Jornal de Sciencias Matemáticas e Astronómicas, fundado em 1877 por Gomes Teixeira (mais tarde conhecido internacionalmente como Teixeira’s Journal), acompanhamos detalhadamente a sua transformação de uma revista nacional numa revista internacional, sendo esta transformação comum naquela época à maioria de revistas científicas importantes de outros países como, por exemplo, no caso do Jornal de Crelle, do Jornal de Liouville, ou outros. Estudou-se igualmente o reconhecimento a nível internacional, através de referências estrangeiras, da abordagem original de Gomes Teixeira à Análise Infinitesimal patente nos seus manuais. O interesse de Gomes Teixeira pela teoria das funções analíticas e pelos seus diferentes desenvolvimentos em série manifestou-se no grande número de artigos publicados sobre este tema e encontrou reconhecimento justo pela designação de um teorema que completa resultados de Lagrange e de Laurent como Teorema de Teixeira. Na sua análise do mérito científico de Gomes Teixeira esta dissertação restringiu-se conscientemente nesta área da Análise Matemática, uma vez que um estudo abrangente de toda a obra ultrapassasse o nosso objetivo. Foi também discutido o intenso intercâmbio científico levado a cabo por Gomes Teixeira através de correspondência e troca de publicações ou permuta de revistas com os matemáticos de diferentes países. Esta análise permitiu verificar um aumento da popularidade dos matemáticos portugueses através do incremento do número de artigos publicados no estrangeiro durante quase 30 anos. Uma fonte imprescindível nesta análise foi o Jahrbuch über die Fortschritte der Mathematik, cujas referências (em geral na língua alemã e por isso até agora quase nunca usadas na literatura Portuguesa) documentaram as publicações em quase todas as revistas matemáticas durante os anos da sua existência entre 1868 e 1942. Descreve-se a colaboração de Gomes Teixeira com diferentes organizações internacionais e documenta-se o apreço internacional por parte do mundo académico. Novos documentos traçam o processo de eleição como membro da Academia das Ciências Alemã Leopoldina, sob proposta de Georg Cantor e outros matemáticos alemães. Finalmente, incluí-se uma breve descrição das atividades levadas a cabo na Rússia, em Espanha e na Grécia em prol do processo de internacionalização da comunidade matemática europeia tendo em vista uma melhor contextualização do contributo de Gomes Teixeira para a integração de Portugal neste processo.