Utilização de modelos de classificação para mineração de dados relacionados à aprendizagem de matemática e ao perfil de professores do ensino fundamental


Autoria(s): Stella Oggioni da Fonseca
Contribuinte(s)

Anderson Amendoeira Namen

Gustavo Mendes Platt

Roberto Pinheiro Domingos

Annabell Del Real Tamariz

Data(s)

20/02/2014

Resumo

No presente trabalho foram utilizados modelos de classificação para minerar dados relacionados à aprendizagem de Matemática e ao perfil de professores do ensino fundamental. Mais especificamente, foram abordados os fatores referentes aos educadores do Estado do Rio de Janeiro que influenciam positivamente e negativamente no desempenho dos alunos do 9 ano do ensino básico nas provas de Matemática. Os dados utilizados para extrair estas informações são disponibilizados pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira que avalia o sistema educacional brasileiro em diversos níveis e modalidades de ensino, incluindo a Educação Básica, cuja avaliação, que foi foco deste estudo, é realizada pela Prova Brasil. A partir desta base, foi aplicado o processo de Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós-processamento dos dados. Os padrões foram extraídos dos modelos de classificação gerados pelas técnicas árvore de decisão, indução de regras e classificadores Bayesianos, cujos algoritmos estão implementados no software Weka (Waikato Environment for Knowledge Analysis). Além disso, foram aplicados métodos de grupos e uma metodologia para tornar as classes uniformemente distribuídas, afim de melhorar a precisão dos modelos obtidos. Os resultados apresentaram importantes fatores que contribuem para o ensino-aprendizagem de Matemática, assim como evidenciaram aspectos que comprometem negativamente o desempenho dos discentes. Por fim, os resultados extraídos fornecem ao educador e elaborador de políticas públicas fatores para uma análise que os auxiliem em posteriores tomadas de decisão.

Classification models were applied in this work in order to mine data related to elementary school teachers profiles and students' mathematics learning. More specifically, teacher characteristics which in uence positively and negatively on the Mathematics tests performance of the students in the 9th grade of elementary education in Rio de Janeiro State were addressed. The data used to extract this information are provided by the National Institute of Studies and Educational Research Anisio Teixeira (INEP), which evaluates the Brazilian educational system at various levels and types of education, including Elementary Education. The Knowledge Discovery in Databases (KDD) process was applied comprising the steps of preparation, mining and post processing of data. The patterns were extracted from the classification models generated by decision tree, rule induction and Bayesian classifiers, whose algorithms are implemented in software Weka (Waikato Environment for Knowledge Analysis). In addition, group methods were used as well as a methodology for making uniformly distributed classes in order to improve the accuracy of the models obtained. The results showed important factors that contribute to the learning of mathematics and aspects that negatively compromise the performance of students. The extracted results can provide to educators and public policies makers the support for analysis and decision making.

Formato

PDF

Identificador

http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6723

Idioma(s)

pt

Publicador

Biblioteca Digital de Teses e Dissertações da UERJ

Direitos

Liberar o conteúdo dos arquivos para acesso público

Palavras-Chave #Data mining #CIENCIA DA COMPUTACAO #Modelos de classificação #Aprendizagem de matemática #Classification models #Mineração de dados #Learning of mathematics
Tipo

Eletronic Thesis or Dissertation

Tese ou Dissertação Eletrônica