988 resultados para Density of liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gallium nitride (GaN) has a bright future in high voltage device owing to its remarkable physical properties and the possibility of growing heterostructures on silicon substrates. GaN High Electron Mobility Transistors (HEMTs) are expected to make a strong impact in off line applications and LED drives. However, unlike in silicon-based power devices, the on-state resistance of HEMT devices is hugely influenced by donor and acceptor traps at interfaces and in the bulk. This study focuses on the influence of donor traps located at the top interface between the semiconductor layer and the silicon nitride on the 2DEG density. It is shown through TCAD simulations and analytical study that the 2DEG charge density has an 'S' shape variation with two distinctive 'flat' regions, wherein it is not affected by the donor concentration, and one linear region. wherein the channel density increases proportionally with the donor concentration. We also show that the upper threshold value of the donor concentration within this 'S' shape increases significantly with the AIGaN thickness and the Al mole fraction and is highly affected by the presence of a thin GaN cap layer. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the proposed system is a V-shaped structure with two polycrystalline solar cells. Compared to solar cells in a conventional approach, the V-shaped structure enhances external quantum efficiency and leads to an increase of 24% in power conversion efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface roughness and its correlation with the polarity of internal hexagonal inclusions and cubic twins have been investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The surface roughness resulted from large amount of strips, which prolonged in [1 (1) over bar0] direction with small size in [110] or [110] direction. The sidestep of each strip is just the top of high density of hexagonal inclusions or cubic microtwins. Moreover, XRD shows that the amount of hexagonal inclusions and cubic microtwins measured in [110] direction are twice or more as much as in [110] direction. Therefore, it is hexagonal inclusions, cubic twins and their distributive polarity that is responsible to the surface characteristics of cubic GaN epilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A V-shaped solar cell module consists of two tilted mono-crystalline cells [J. Li, China Patent No. 200410007708.6 (March, 2004)]. The angle included between the two tilted cells is 90 degrees. The two cells were fabricated by using polished silicon wafers. The scheme of both-side polished wafers has been proposed to reduce optical loss. Compared to solar cells in a planar way, the V-shaped structure enhances external quantum efficiency and leads to an increase of 15% in generation photocurrent density. The following three kinds of trapped photons are suggested to contribute to the increase: (1) infrared photons converted from visible photons due to a transformation mechanism, (2) photons reflected from top contact metal, and (3) a residual reflection which can not be eliminated by an antireflection coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetocapacitive response of a double-barrier structure (DBS), biased beyond resonances, has been employed to determine the density of states (DOS) of the two-dimensional electron gas residing in the accumulation layer on the incident side of the DBS. An adequate procedure is developed to compare the model calculation of the magnetocapacitance with the experimental C vs B curves measured at different temperatures and biases. The results show that the fitting is not only self-consistent but also remarkably good even in well-defined quantum Hall regimes. As a result, information about the DOS in strong magnetic fields could reliably be extracted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth,fabrication,and characterization of 0.2μm gate-length AlGaN/GaN HEMTs,with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described.The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cm2/(V·s) at an electron concentration of 1.52×1016 cm-3.The resistivity of the thick GaN buffer layer is greater than 108Ω·cm at room temperature.The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω/□ with uniformity better than 96%.Devices of 0.2μm×40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of77GHz.The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz.The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fermi-level pinning (FLP) at the metal/high-k interface and its dependence on the electron state density of the metal gate are investigated. It is found that the FLP is largely determined by the distortion of the vacuum level of the metal which is quantitatively ruled by the electron state density of the metal. The physical origin of the vacuum level distortion of the metal is attributed to an image charge of the interface charge in the metal. Such results indicate that the effective work function of the metal/high-k stack is also governed by the electron state density of the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theories of wetting of liquids on solid surfaces under the condition that van der Waals force is dominant are briefly reviewed. We show theoretically that Zisman's empirical equation for wetting of liquids on solid surfaces is a linear approximation of the Young-van der Waals equation in the wetting region, and we express the two parameters in Zisman's empirical equation in terms of the dielectric polarizabilities of the solid and liquids. The materials contained in this paper are suitable for physics teaching of wetting phenomena for undergraduate, graduate, general physicist, etc.