385 resultados para Demineralized whey
Resumo:
This research evaluated the bone repair process after implantation of homogenous demineralized dentin matrix (HDDM) in surgical defects in the parietal bone of rabbits with alloxan-induced diabetes, using a polytetrafluorethylene (PTFe) barrier for guided bone regeneration. Thirty-six rabbits were used and divided into four groups: control (C, n = 12), diabetic (D, n = 12, left parietal bone), diabetic with PTFe (DPTFe, same 12 rabbits, right parietal bone), and diabetic with PTFe associated to HDDM (D-PTFe+HDDM, n = 12). Bone defects were created in the parietal bone of the rabbits and the experimental treatments were performed, where applicable. The rabbits were sacrificed after 15, 30, 60 and 90 days. The bone defects were examined radiographically and by optical density (ANOVA and Tukey test, p < .05). The radiographic findings showed that the D-PTFe+HDDM group presented greater radiopacity and better trabecular bone arrangement when compared to that of the C, D and D-PTFe groups. The statistical analysis showed significant differences in the optical density of the newly formed bone among the studied groups. It was possible to conclude that HDDM was biocompatible in diabetic rabbits.
Resumo:
Neste estudo, a cromatografia por exclusão de tamanho (SEC) com detecção online ultravioleta (UV), espectrometria de absorção atômica em forno de grafite (GF AAS) e a espectrometria de massa por tempo de voo com dessorção/ionização de matriz assistida por laser (MALDI-TOF-MS) foram usadas para estudar a associação de selênio com macromoléculas e compostos presentes no soro de leite de búfala e bovino. Os perfis de SEC-UV obtidos para as amostras de soro de leite de búfala e soro de leite bovino indicaram a presença de espécies de alta e baixa massa molecular. A combinação das informações obtidas com SEC-UV, GF AAS e MALDI-TOF-MS para as frações < 10 kDa confirmou a associação de selênio com espécies de baixa massa molecular.
Resumo:
Our objective was to investigate the effects of rehydration with acid whey or water at three moisture levels, as well as the effects of bacterial inoculation, on the fermentation, chemical composition and aerobic stability of corn grain silages. The trial was conducted in a completely randomized design with four replicates in a factorial arrangement as follows: 3 (rehydration with three different moisture levels: 300,350 and 400 mL/kg of corn grain)x 2 (silage inoculated with bacteria or not inoculated (control))x 2 (liquid used in the rehydration: acid whey or water). Overall, corn grain silages rehydrated with acid whey produced more lactic acid than the silages rehydrated with water (13.8 vs. 12.6 g/kg of dry matter (DM), respectively). In addition, increases in the rehydration of corn grain silages promoted decreases (linear) in lactic acid concentration as well as in production of total acids. Although inoculated silages had higher pH as consequence of the rehydration using water at the three levels, these treatments presented high DM recovery. In general, neutral detergent fiber (aNDFom) decreased if inoculant was applied in corn grain silages rehydrated with acid whey. After silos opening, silages rehydrated with 350 or 400 mL/kg (independent of the liquid) had lower aerobic stability than silages rehydrated with 300 mL/kg. Overall, we found that the inoculant did not promote significant changes in the composition of the corn grain silage. In contrast, the potential of the use of acid whey in ensiling corn grain is high, as its addition leads to improvements in the fermentation process and aerobic stability of the silages. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The bioavailability of amino adds from milk whey protein hydrolysates was evaluated using diffusion of the substances through semi-permeable membranes (dialyzability) and transport by Caco-2 cell cultures. The hydrolysates with low degree of hydrolysis (LDH) and high degree of hydrolysis (HDH) were obtained after 120 min of reaction time at 50 degrees C after the initial addition of pepsin, followed by the addition of trypsin, chymotrypsin and carboxypeptidase-A. The proteins and hydrolysates were further subjected to in vitro digestion with pepsin plus pancreatin. HPLC was used to determine the concentrations of dialyzable amino adds (48.4% of the non-hydrolyzed proteins, 63.2% of the LDH sample and 58.3% of the HDH sample), demonstrating the greater dialyzability of the hydrolysates. The LDH and HDH whey protein hydrolysates prepared with pepsin, trypsin, chymotrypsin and carboxypeptidase-A showed only 14.7% and 20.8% of dialyzable small peptides and amino acids, respectively. The efficiency of absorption was demonstrated by the preferential transport of Ile, Lou and Arg through a layer of cells. In the LDH hydrolysate, Tyr was also transported. Prior high- and low-degree hydrolysis of the whey provided transport by 5.7% and 6.6%, respectively, in comparison with 23% for non-hydrolyzed proteins, considering the total amount of these amino adds that was applied to the cells. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70±16.50 and 50.80±1.52; 30 days, 62.73±16.51 and 54.20±1.23; 60 days, 63.03±11.04 and 59.91±3.32; 90 days, 103.60±24.86 and 78.99±1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00±2.74 and 20.66±7.45; 30 days 31.92±6.06 and 25.31±5.59; 60 days 25.29±16.30 and 46.73±2.07; 90 days 38.10±14.04 and 53.38±9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.
Resumo:
Autogenous bone grafts are considered to be the gold standard in bone regeneration because of their osteogenic activity; however, due to limited availability of intraoral donor sites and the need to resolve the demands of patients requires an alternative to these. Two male patients were submitted to implant surgery in two stages with 6 months intervals between each of them: the first was exodontia and placement of DBM graft into the socket; the second stage was the drill with a 2 mm internal diameter trephine in center of the alveolar ridge previously grafted with DBM and subsequent implant placement. The samples were analyzed under histological techniques. A very mature bone was observed at 6 months after DBM graft placement in the sockets, showing it to be a good alternative as bone graft.