913 resultados para inter-rater reliability
Resumo:
The circular photogalvanic effect (CPGE) is observed in InN at inter-band excitation. The function of the CPGE induced current on laser helicity is experimentally demonstrated and illustrated with the microscopic model. A spin-dependent current obtained in InN is one order larger than in the AlGaN/GaN heterostructures at inter-band excitation. The dependence of CPGE current amplitude on light power and incident angle can be well evaluated with phenomenological theory. This sizeable spin-dependent current not only provides an opportunity to realize spin polarized current at room temperature, but also can be utilized as a reliable tool of spin splitting investigation in semiconductors. (c) 2007 Published by Elsevier Ltd.
Resumo:
Double-state lasing phenomena are easily observed in self-assembled quantum dot (QD) lasers. The effect of inter-level relaxation rate and cavity length on the double-state lasing performance of QD lasers is investigated on the basis of a rate equation model. Calculated results show that, for a certain cavity length, the ground state (GS) lasing threshold current increases almost linearly with the inter-level relaxation lifetime. However, as the relaxation rate becomes slower, the ratio of excited state (ES) lasing threshold current over the GS one decreases, showing an evident exponential behavior. A relatively feasible method to estimate the inter-level relaxation lifetime, which is difficult to measure directly, is provided. In addition, fast inter-level relaxation is favorable for the GS single-mode lasing, and leads to lower wetting layer (WL) carrier occupation probability and higher QD GS capture efficiency and external differential quantum efficiency. Besides, the double-state lasing effect strongly depends on the cavity length. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
中国计算机学会
Resumo:
The influence of the heaters on the reliability of the thermo-optic (TO) switch matrix is analyzed and an improved driving circuit based on the analyzed results is designed and fabricated. The circuit can improve the reliability of the switch matrix device from 78.87% to 97.04% for a 4×4 optical switch device with a simplified tree structure. The simulation and experimental results show the circuit can provide suitable driving current for TO switch matrix.
Resumo:
In this paper, we investigate the effect of silicon surface cleaning prior to oxidation on the reliability of ultra-thin oxides. It is demonstrated that chemical preoxide grown in H2SO4/H2O2 (SPM) solution prior to oxidation provides better oxide integrity than both HF-based solution dipping and preoxide grown in RCA SC1 or SC2 solutions. It is also found that the oxides with SPM preoxide exhibit better hot-carrier immunity than the RCA cleaned oxides.