903 resultados para enriquecimento de funções
Resumo:
Se aplican algunas nociones teóricas del enfoque ontosemiótico del conocimiento y la instrucción matemática (Godino, Contreras, Font, 2006) al análisis de una experiencia de enseñanza del concepto de límite funcional con estudiantes de bachillerato. Los procesos de enseñanza – aprendizaje se modelizan en este marco teórico como un proceso estocástico multidimensional compuesto de seis subprocesos (epistémico, docente, discente, mediacional, cognitivo y emocional) con sus respectivas trayectorias y estados potenciales. En este trabajo centramos la atención en la dimensión epistémica mostrando algunos conflictos semióticos y limitaciones en el significado institucional implementado.
Resumo:
En este trabajo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
Este artículo presenta los resultados de un estudio sobre las tradiciones de enseñanza en cuatro países europeos: Bélgica (Flandes), Inglaterra, Hungría y España. Se trata de un estudio a pequeña escala en el que se emplean métodos cuantitativos y cualitativos, y que, en lugar de pretender obtener generalizaciones, está orientado a arrojar alguna luz que posibilite la mejora de la enseñanza y el aprendizaje de las matemáticas. Establece comparaciones con los resultados de los test TIMSS y PISA y extrae alguna conclusión para la formación inicial de maestros y profesores de matemáticas. Extraemos de éste los resultados relativos a los datos cuantitativos y nos centramos en el foco matemático.
Resumo:
En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.
Resumo:
En este trabajo se presenta el resultado obtenido del análisis de un proceso de razonamiento inductivo desarrollado por 12 estudiantes de secundaria en un contexto de resolución de problemas. Se plantea un problema, en el transcurso de una entrevista, que consiste en determinar el número máximo de regiones que se obtienen al trazar rectas sobre un plano. Durante la resolución del problema los estudiantes, y a través del dialogo con el entrevistador, han de explicar y justificar sus decisiones. Centrándonos en el trabajo de Pólya y en otras investigaciones previas relacionadas sobre este tema, se define un sistema de categorías mediante las cuales se organizan los datos para su análisis.
Resumo:
Las ideas que aquí se presentan son un resumen e interpretación de las publicadas en el capítulo Mathematics Literacy, incluido en el documento editado en 2003 por la OCDE The PISA 2003 Assessment Framework y aparecen en el documento Aproximación a un modelo de evaluación: el proyecto PISA 2000, que ha sido publicado por el Ministerio de Educación, Cultura y Deportes.
Resumo:
La enseñanza-aprendizaje de los conceptos elementales del Análisis matemático en el nivel del Bachillerato, constituye uno de los puntos de investigación en Didáctica de las Matemáticas más relevantes en la actualidad. Desde marcos teóricos diferentes como la ingeniería didáctica, teoría de obstáculos, la teoría antropológica o el APOS, se han realizado investigaciones sobre la enseñanza-aprendizaje del límite de una función en los niveles de enseñanza de Bachillerato y Universitaria. En este trabajo se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado.
Resumo:
En este documento presentamos algunos resultados de un estudio sobre el desarrollo del conocimiento didáctico de futuros profesores que participaron en una asignatura de didáctica de la matemática. Con base en la idea de factores de desarrollo del conocimiento didáctico y de un esquema metodológico que desarrollamos para identificar y describir estados de desarrollo, codificamos y analizamos algunas de las producciones que los futuros profesores elaboraron en grupos en la asignatura. La caracterización de estos estados permite establecer cómo evoluciona el conocimiento didáctico de los futuros profesores a lo largo del tiempo.
Resumo:
Este trabajo realiza, en primer lugar, un estudio de manuales de primero y segundo de Bachillerato-LOGSE, respecto al concepto de integral definida, exponiendo las cuatro dimensiones que se han considerado y un ejemplo de aplicación a un manual de 2º de Bachillerato. En la segunda parte, se hace un estudio comparativo entre los nueve manuales realizados, más representativos de Jaén y provincia, centrándonos en los significados institucionales históricos y en los conflictos semióticos.
Resumo:
Este trabajo enmarca y describe algunas interacciones entre alumnos/ investigador/docente generadas durante el desarrollo de una investigación en didáctica de la matemática. Toda investigación supone la toma de decisiones que atañen a diversos aspectos relacionados con el problema, los objetivos de la investigación y los resultados que se obtienen durante su desarrollo. Se pondrá de manifiesto que estas decisiones, que definen en buena medida la coherencia de la investigación, deben tomarse en todas las etapas de la investigación, desde su inicio hasta el momento de escribir la memoria.
Resumo:
La naturaleza del pensamiento de los profesores es una área de considerable interés y la atención hacia la relevancia de la geometría como un importante componente formativo es un hecho en los planteamientos interesados en la formación inicial y continuada del profesorado. En el ámbito de la investigación cualitativa, presentaremos las contribuciones de un entorno virtual para el desarrollo crítico del contenido del conocimiento profesional del profesor de matemática. Específicamente, analizar un proceso teleinteractivo docente a partir de situaciones de enseñanza-aprendizaje en geometría (para alumnos con 11-14 años). La importancia del proceso teleinteractivo para el desarrollo de habilidades metacognitivas en los profesores es un hecho destacable en las conclusiones de la investigación.
Resumo:
En este trabajo establecemos la siguiente hipótesis: el sistema conjeturas-pruebas-refutaciones constituye la lógica del descubrimiento matemático escolar; bien entendido que en las matemáticas de la enseñanza secundaria el énfasis no puede situarse en la frontera móvil que Lakatos (1978) ha señalado en el trabajo de los matemáticos profesionales, esto es, la frontera demostraciones/refutaciones sino más bien en la frontera anterior, conjeturas/demostraciones. Dicho sistema supera didácticamente al enfoque unidimensional de demostración como prueba formalizada, enfoque tradicional del estilo deductivista en la enseñanza de las matemáticas. Esta hipótesis surge del análisis de las dificultades epistemológicas, cognitivas y didácticas del concepto de demostración (en particular, de la demostración por reducción al absurdo) y de la revisión de algunos estudios experimentales sobre la práctica escolar de la demostración.
Resumo:
En este trabajo pretendemos sintetizar algunas cuestiones de método aplicables a la investigación educativa. Para ello reflexionamos sobre el método seguido para la realización de una amplia investigación de referencia, Vallecillos (1994), que pertenece al campo de la educación estadística. Es un ejemplo de lo que podemos llamar ‘método estadístico’ que puede aplicarse como ‘modelo’ en la investigación educativa en general. Se incluyen también, a modo de ejemplo de su funcionamiento, los resultados obtenidos en esa investigación sobre la comprensión de un concepto clave en los contrastes de hipótesis como el nivel de significación.
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.