882 resultados para User Generated Content


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates users' anticipation of their future experiences with interactive products to support design for experience in the early stages of product development. This research generates new knowledge of anticipated user experience (AUX), which reveals users' tendency to perceive the pragmatic quality of products as the main determinant of their positive future experiences. The AUX Framework has been an important outcome of this study. The exploration of the components of this framework allows a better prediction and understanding of users' underlying needs and potential usage contexts valuable for the early design phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical rationale, policy analysis and research agenda for a critical sociology of language and literacy curriculum, outlining the agenda for a political economy of textbooks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer generated materials are ubiquitous and we encounter them on a daily basis, even though most people are unaware that this is the case. Blockbuster movies, television weather reports and telephone directories all include material that is produced by utilising computer technologies. Copyright protection for materials generated by a programmed computer was considered by the Federal Court and Full Court of the Federal Court in Telstra Corporation Limited v Phone Directories Company Pty Ltd. The court held that the White and Yellow pages telephone directories produced by Telstra and its subsidiary, Sensis, were not protected by copyright because they were computer-generated works which lacked the requisite human authorship. The Copyright Act 1968 (Cth) does not contain specific provisions on the subsistence of copyright in computer-generated materials. Although the issue of copyright protection for computer-generated materials has been examined in Australia on two separate occasions by independently-constituted Copyright Law Review Committees over a period of 10 years (1988 to 1998), the Committees’ recommendations for legislative clarification by the enactment of specific amendments to the Copyright Act have not yet been implemented and the legal position remains unclear. In the light of the decision of the Full Federal Court in Telstra v Phone Directories it is timely to consider whether specific provisions should be enacted to clarify the position of computer-generated works under copyright law and, in particular, whether the requirement of human authorship for original works protected under Part III of the Copyright Act should now be reconceptualised to align with the realities of how copyright materials are created in the digital era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the widespread of social media websites in the internet, and the huge number of users participating and generating infinite number of contents in these websites, the need for personalisation increases dramatically to become a necessity. One of the major issues in personalisation is building users’ profiles, which depend on many elements; such as the used data, the application domain they aim to serve, the representation method and the construction methodology. Recently, this area of research has been a focus for many researchers, and hence, the proposed methods are increasing very quickly. This survey aims to discuss the available user modelling techniques for social media websites, and to highlight the weakness and strength of these methods and to provide a vision for future work in user modelling in social media websites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collisions between different road users make a substantial contribution to road trauma. Although evidence suggests that different road users interpret the same road situations differently, it is not clear how road users' situation awareness differs, nor is it clear which differences might lead to conflicts. This article presents the findings from an on-road study conducted to examine driver, motorcyclist and cyclist situation awareness in different road environments. The findings suggest that, in addition to minor differences in the structure of different road users' situation awareness (i.e. amount of information and how it is integrated), the actual content of situation awareness in terms of road user schemata, the resulting interaction with the world and the information underpinning situation awareness is markedly different. Further examination indicates that the differences are likely to be compatible along arterial roads, shopping strips and at roundabouts, but that they may create conflicts between different road users at intersections. Interventions designed to support compatible situation awareness and behaviour between different road users are discussed. Practitioner Summary: Incompatible situation awareness plays a key role in collisions between different road users (e.g. drivers and motorcyclists). This on-road study examined situation awareness in drivers, motorcyclists and cyclists, identifying the key differences and potential conflicts that arise. The findings are used to propose interventions designed to enhance the compatibility of situation awareness between road users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality of experience (QoE) measures the overall perceived quality of mobile video delivery from subjective user experience and objective system performance. Current QoE computing models have two main limitations: 1) insufficient consideration of the factors influencing QoE, and; 2) limited studies on QoE models for acceptability prediction. In this paper, a set of novel acceptability-based QoE models, denoted as A-QoE, is proposed based on the results of comprehensive user studies on subjective quality acceptance assessments. The models are able to predict users’ acceptability and pleasantness in various mobile video usage scenarios. Statistical regression analysis has been used to build the models with a group of influencing factors as independent predictors, including encoding parameters and bitrate, video content characteristics, and mobile device display resolution. The performance of the proposed A-QoE models has been compared with three well-known objective Video Quality Assessment metrics: PSNR, SSIM and VQM. The proposed A-QoE models have high prediction accuracy and usage flexibility. Future user-centred mobile video delivery systems can benefit from applying the proposed QoE-based management to optimize video coding and quality delivery decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, protection orders are a key legal response to domestic violence, and are often viewed as a way of providing for victim safety. For instance, recently the joint Australian and New South Wales Law Reform Commissions recommended that a common core purpose of all state and territory domestic violence legislation should be ‘to ensure or maximise the safety and protection of persons who fear or experience family violence’ (2010:Recommendation 7-4). Drawing and building upon prior research in Australia and the United States (‘US’), this paper uses comparative quantitative content analysis to assess the victim safety focus of domestic violence protection order legislation in each Australian state and territory. The findings of this analysis show that the Northern Territory, South Australia and Victoria ‘stand out’ from the other jurisdictions, having the highest victim safety focus in their legislation. However, there remains sizeable scope for improvement in all Australian jurisdictions, in terms of the victim safety focus of their legislative provisions and the considerations of legislative inconsistency between jurisdictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological advances have led to an ongoing spread of public displays in urban areas. However, they still mostly show passive content such as commercials and digital signage. Researchers took notice of their potential to spark situated civic discourse in public space and have begun working on interactive public display applications. Attracting people’s attention and providing a low barrier for user participation have been identified as major challenges in their design. This thesis presents Vote With Your Feet, a hyperlocal public polling tool for urban screens allowing users to express their opinions. Similar to vox populi interviews on TV or polls on news websites, the tool is meant to reflect the mindset of the community on topics such as current affairs, cultural identity and local matters. It shows one Yes/No question at a time and enables users to vote by stepping on one of two tangible buttons on the ground. This user interface was introduced to attract people’s attention and to lower participation barriers. Vote With Your Feet was informed by a user-centred design approach that included a focus group, expert interviews and extensive preliminary user studies in the wild. Deployed at a bus stop, Vote With Your Feet was evaluated in a field study over the course of several days. Observations of people and interviews with 30 participants revealed that the novel interaction technology was perceived as inviting and that Vote With Your Feet can spark discussions among co-located people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an alternative OCGM interface for a bulletin board, where a user can pin a note or a drawing, and actually shares contents. Exploiting direct and continuous manipulations, opposite to discrete gestures, to explore containers, the proposed interface supports a more natural and immediate interaction. It manages also the presence of different simultaneous users, allowing for the creation of local multimedia contents, the connection to social networks, providing a suitable working environment for cooperative and collaborative tasks in a multi-touch setup, such as touch-tables, interactive walls or multimedia boards

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As of today, opinion mining has been widely used to iden- tify the strength and weakness of products (e.g., cameras) or services (e.g., services in medical clinics or hospitals) based upon people's feed- back such as user reviews. Feature extraction is a crucial step for opinion mining which has been used to collect useful information from user reviews. Most existing approaches only find individual features of a product without the structural relationships between the features which usually exists. In this paper, we propose an approach to extract features and feature relationship, represented as tree structure called a feature hi- erarchy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature hierarchy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that the proposed feature extraction approach can identify more correct features than the baseline model. Even though the datasets used in the experiment are about cameras, our work can be ap- plied to generate features about a service such as the services in hospitals or clinics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Physical activity, particularly walking, is greatly beneficial to health; yet a sizeable proportion of older adults are insufficiently active. The importance of built environment attributes for walking is known, but few studies of older adults have examined neighbourhood destinations and none have investigated access to specific, objectively-measured commercial destinations and walking. METHODS: We undertook a secondary analysis of data from the Western Australian state government's health surveillance survey for those aged 65--84 years and living in the Perth metropolitan region from 2003--2009 (n = 2,918). Individual-level road network service areas were generated at 400 m and 800 m distances, and the presence or absence of six commercial destination types within the neighbourhood service areas identified (food retail, general retail, medical care services, financial services, general services, and social infrastructure). Adjusted logistic regression models examined access to and mix of commercial destination types within neighbourhoods for associations with self-reported walking behaviour. RESULTS: On average, the sample was aged 72.9 years (SD = 5.4), and was predominantly female (55.9%) and married (62.0%). Overall, 66.2% reported some weekly walking and 30.8% reported sufficient walking (>=150 min/week). Older adults with access to general services within 400 m (OR = 1.33, 95% CI = 1.07-1.66) and 800 m (OR = 1.20, 95% CI = 1.02-1.42), and social infrastructure within 800 m (OR = 1.19, 95% CI = 1.01-1.40) were more likely to engage in some weekly walking. Access to medical care services within 400 m (OR = 0.77, 95% CI = 0.63-0.93) and 800 m (OR = 0.83, 95% CI = 0.70-0.99) reduced the odds of sufficient walking. Access to food retail, general retail, financial services, and the mix of commercial destination types within the neighbourhood were all unrelated to walking. CONCLUSIONS: The types of neighbourhood commercial destinations that encourage older adults to walk appear to differ slightly from those reported for adult samples. Destinations that facilitate more social interaction, for example eating at a restaurant or church involvement, or provide opportunities for some incidental social contact, for example visiting the pharmacy or hairdresser, were the strongest predictors for walking among seniors in this study. This underscores the importance of planning neighbourhoods with proximate access to social infrastructure, and highlights the need to create residential environments that support activity across the life course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mature term-based or pattern-based approaches have been used in the field of information filtering to generate users’ information needs from a collection of documents. A fundamental assumption for these approaches is that the documents in the collection are all about one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, and this has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. However, the enormous amount of discovered patterns hinder them from being effectively and efficiently used in real applications, therefore, selection of the most discriminative and representative patterns from the huge amount of discovered patterns becomes crucial. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, Maximum matched Pattern-based Topic Model (MPBTM), is proposed. The main distinctive features of the proposed model include: (1) user information needs are generated in terms of multiple topics; (2) each topic is represented by patterns; (3) patterns are generated from topic models and are organized in terms of their statistical and taxonomic features, and; (4) the most discriminative and representative patterns, called Maximum Matched Patterns, are proposed to estimate the document relevance to the user’s information needs in order to filter out irrelevant documents. Extensive experiments are conducted to evaluate the effectiveness of the proposed model by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models