954 resultados para Two-component systems PhoBR and PhoPQ
Resumo:
Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.
Resumo:
We report experimental and theoretical studies of the two-photon absorption spectrum of two nitrofuran derivatives: nitrofurantoine, (1-(5-nitro-2-furfurilideneamine)-hidantoine) and quinifuryl, 2-(5`-nitro-2`-furanyl) ethenyl-4-{N-[4`-(N,N-diethylamino)-1`-methylbutyl]carbamoyl} quinoline. Both molecules are representative of a family of 5-nitrofuran-ethenyl-quinoline drugs that have been demonstrated to display high toxicity to various species of transformed cells in the dark. We determine the two-photon absorption cross-section for both compounds, from 560 to 880 nm, which present peak values of 64 GM for quinifuryl and 20 GM for nitrofurantoine (1 GM = 1 x 10(-50) cm(4).s.photon(-1)). Besides, theoretical calculations employing the linear and quadratic response functions were carried out at the density functional theory level to aid the interpretations of the experimental results. The theoretical results yielded oscillator strengths, two-photon transition probabilities, and transition energies, which are in good agreement with the experimental data. A higher number of allowed electronic transitions was identified for quinifuryl in comparison to nitrofurantoine by the theoretical calculations. Due to the planar structure of both compounds, the differences in the two-photon absorption cross-section values are a consequence of their distinct conjugation lengths. (c) 2011 American Institute of Physics. [doi:10.1063/1.3514911]
Resumo:
In this study, the one- and two-photon absorption spectra of seven azoaromatic compounds (five pseudostilbenes-type and two aminoazobenzenes) were theoretically investigated using the density functional theory combined with the response functions formalism. The equilibrium molecular structure of each compound was obtained at three different levels of theory: Hartree-Fock, density functional theory (DFT), and Moller-Plesset 2. The effect of solvent on the equilibrium structure and the electronic transitions of the compounds were investigated using the polarizable continuum model. For the one-photon absorption, the allowed pi ->pi(*) transition energy showed to be dependent on the molecular structures and the effect of solvent, while the n ->pi(*) and pi ->pi(*)(n) transition energies exhibited only a slight dependence. An inversion between the bands corresponding to the pi ->pi(*) and n ->pi(*) states due to the effect of solvent was observed for the pseudostilbene-type compounds. To characterize the allowed two-photon absorption transitions for azoaromatic compounds, the response functions formalism combined with DFT using the hybrid B3LYP and PBE0 functionals and the long-range corrected CAM-B3LYP functional was employed. The theoretical results support the previous findings based on the three-state model. The model takes into account the ground and two electronic excited states and has already been used to describe and interpret the two-photon absorption spectrum of azoaromatic compounds. The highest energy two-photon allowed transition for the pseudostilbene-type compounds shows to be more effectively affected (similar to 20%) by the torsion of the molecular structure than the lowest allowed transition (similar to 10%). In order to elucidate the effect of the solvent on the two-photon absorption spectra, the lowest allowed two-photon transition (dipolar transition) for each compound was analyzed using a two-state approximation and the polarizable continuum model. The results obtained reveal that the effect of solvent increases drastically the two-photon cross-section of the dipolar transition of the pseudostilbene-type compounds. In general, the features of both one- and two-photon absorption spectra of the azoaromatic compounds are well reproduced by the theoretical calculations.
Resumo:
Soil acidity is one of the main limiting factors for the growth of pasture grasses in Brazilian soils. In addition to lime, slag can be used to correct soil acidity and help plants to absorb nutrients in adequate amounts. The objective of this experiment was to evaluate, under greenhouse conditions, the effects of slag and lime plus nitrogen (N) on marandu palisade grass plants` nutritional status as well as the absorption of macronutrients submitted to two cuts. The treatments consisted of two corrective materials (slag and lime), three corrective material rates (0.81, 1.61, and 3.22 g dm-3 of ECaCO3), three N rates (75, 150, and 300 mg dm-3) plus a control treatment, with four replications. Macronutrient contents in the forage plants were found to be present in adequate levels. The mean value of N accumulated in the shoot was 40.1 mg per plant, phosphorus (P) was 4.6 mg per plant, potassium (K) was 38.6 mg per plant, calcium (Ca) was 7.3 mg per plant, magnesium (Mg) was 6.7 mg per plant, and sulfur (S) was 3.5 mg per plant at the first cut. At the second cut, the nutrient accumulations values were N 50.8 mg per plant, P 6.3 mg per plant, K 20.7 mg per plant, Ca 21.6 mg per plant, Mg 24.0 mg per plant, and S 4.7 mg per plant. Macronutrients accumulation in the shoot of grass increased with the addition of both the correctives as well as the N rates.
Resumo:
BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.
Resumo:
The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.
Resumo:
Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
P>Coconut water is an isotonic beverage naturally obtained from the green coconut. After extracted and exposed to air, it is rapidly degraded by enzymes peroxidase (POD) and polyphenoloxidase (PPO). To study the effect of thermal processing on coconut water enzymatic activity, batch process was conducted at three different temperatures, and at eight holding times. The residual activity values suggest the presence of two isoenzymes with different thermal resistances, at least, and a two-component first-order model was considered to model the enzymatic inactivation parameters. The decimal reduction time at 86.9 degrees C (D(86.9 degrees C)) determined were 6.0 s and 11.3 min for PPO heat labile and heat resistant fractions, respectively, with average z-value = 5.6 degrees C (temperature difference required for tenfold change in D). For POD, D(86.9 degrees C) = 8.6 s (z = 3.4 degrees C) for the heat labile fraction was obtained and D(86.9 degrees C) = 26.3 min (z = 6.7 degrees C) for the heat resistant one.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The spider mites Tetranychus urticae Koch and Tetranychus evansi Baker and Pritchard are important pests of horticultural crops. They are infected by entomopathogenic fungi naturally or experimentally. Fungal pathogens known to cause high infection in spider mite populations belong to the order Entomophthorales and include Neozygites spp. Studies are being carried out to develop some of these fungi as mycoacaricides, as standalone control measures in an inundative strategy to replace the synthetic acaricides currently in use or as a component of integrated mite management. Although emphasis has been put on inundative releases, entomopathogenic fungi can also be used in classical, conservation and augmentative biological control. Permanent establishment of an exotic agent in a new area of introduction may be possible in the case of spider mites. Conservation biological control can be achieved by identifying strategies to promote any natural enemies already present within crop ecosystems, based on a thorough understanding of their biology, ecology and behaviour. Further research should focus on development of efficient mass production systems, formulation, and delivery systems of fungal pathogens.
Resumo:
Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.
Resumo:
The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved beta-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.
Resumo:
This work deals with the use of an aqueous two-phase system (ATPS) of PEG/citrate to remove proteases from a Clostridium perfringens fermentation broth. To plan the experimental tests and evaluate the corresponding results, three successive experimental designs were employed, for which the PEG molar mass (M-PEG) and concentration (C-PEG), the citrate concentration (C-C) and the pH were selected as independent variables, while the purification factor (PF), the partition coefficient (K), the activity yield (Y) and the selectivity (S) were selected as responses. PF of proteases in the top phase was shown to increase with increasing MPEG and decreasing Cc, whereas a completely opposite trend was observed for K. On the other hand, Y was favored by simultaneous decreases in both these variables, while S decreased with increasing Cc. Therefore, selecting a simultaneous increase in PF and Y as the most desirable result, the best performance of the system was obtained using M-PEG = 10-000 g/mol C-PEG = 22% (w/w) and C-c = 8.0% (w/w) at pH 8.5. Under these conditions, the activity yield was very high (131 %) but the purification factor (4.2) and the selectivity (4.3) were lower than those ensured by more selective purification methods. According to these results, the ATPS seems to be an interesting alternative primary concentration/decontamination step for vaccine preparation from C. perfringens fermented broth. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. Objective: The purpose of this work was to obtain emulsions produced with Buriti oil and nonionic surfactants. Methods: Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75 degrees C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. Results: All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Conclusion: Based on these results, the emulsions obtained could be considered as promising delivery systems.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.