SYNCHRONIZATION OF A CLASS OF SECOND-ORDER NONLINEAR SYSTEMS


Autoria(s): MIJOLARO, A. P.; ABERTO, L. F. C.; BRETAS, N. G.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

18/10/2012

18/10/2012

2008

Resumo

The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.

Brazilian research foundation FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)[04/06660-3]

Identificador

INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, v.18, n.11, p.3461-3471, 2008

0218-1274

http://producao.usp.br/handle/BDPI/17750

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000262599200017&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

WORLD SCIENTIFIC PUBL CO PTE LTD

Relação

International Journal of Bifurcation and Chaos

Direitos

restrictedAccess

Copyright WORLD SCIENTIFIC PUBL CO PTE LTD

Palavras-Chave #Synchronization #nonlinear systems #nonlinear oscillators #CHAOTIC SYSTEMS #Mathematics, Interdisciplinary Applications #Multidisciplinary Sciences
Tipo

article

original article

publishedVersion