879 resultados para General allocation model
Resumo:
This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describe a model from system theory that can be used as a base for better understanding of different situations in the firms evolution. This change model is derived from the theory of organic systems and divides the evolution of the system into higher complexity of the system structure in three distinctive phases. These phases are a formative phase, a normative phase and an integrative phase. After a summary of different types of models of the dynamics of the firm the paper makes a theoretical presentation of the model and how this model is adaptable for better understanding of the need for change in strategic orientation, organization form and leadership style over time.
Resumo:
We report results on the optimal \choice of technique" in a model originally formulated by Robinson, Solow and Srinivasan (henceforth, the RSS model) and further discussed by Okishio and Stiglitz. By viewing this vintage-capital model without discounting as a speci c instance of the general theory of intertemporal resource allocation associated with Brock, Gale and McKenzie, we resolve longstanding conjectures in the form of theorems on the existence and price support of optimal paths, and of conditions suÆcient for the optimality of a policy rst identi ed by Stiglitz. We dispose of the necessity of these conditions in surprisingly simple examples of economies in which (i) an optimal path is periodic, (ii) a path following Stiglitz' policy is bad, and (iii) there is optimal investment in di erent vintages at di erent times. (129 words)
Resumo:
In this paper I study optimal auctions of identical goods. There is synergy in the number of goods and independent bidder’s signals.
Resumo:
I study the welfare cost of inflation and the effect on prices after a permanent increase in the interest rate. In the steady state, the real money demand is homogeneous of degree one in income and its interest-rate elasticity is approximately equal to −1/2. Consumers are indifferent between an economy with 10% p.a. inflation and one with zero inflation if their income is 1% higher in the first economy. A permanent increase in the interest rate makes the price level to drop initially and inflation to adjust slowly to its steady state level.
Resumo:
We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis.
Resumo:
In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard.
Resumo:
This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper develops a novel full analytic model for vibration analysis of solid-state electronic components. The model is just as accurate as finite element models and numerically light enough to permit for quick design trade-offs and statistical analysis. The paper shows the development of the model, comparison to finite elements and an application to a common engineering problem. A gull-wing flat pack component was selected as the benchmark test case, although the presented methodology is applicable to a wide range of component packages. Results showed very good agreement between the presented method and finite elements and demonstrated the usefulness of the method in how to use standard test data for a general application. © 2013 Elsevier Ltd.
Resumo:
In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.
Resumo:
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Resumo:
We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting and suitable alternative to models with complex structures that involve the general case of several conditionally independent diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was considered as a factor of stratification in the model. The general model with stratification of the population performed better in comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit (c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have positive results.
Resumo:
[EN] The General Curvilinear Environmental Model is a high-resolution system composed of the General Curvilinear Coastal Ocean Model (GCCOM) and the General Curvilinear Atmospheric Model (GCAM). Both modules are capable of reading a general curvilinear grid, orthogonal as well as non-orthogonal in all three directions. These two modules are weakly coupled using the distributed coupling toolkit (DCT). The model can also be nested within larger models and users are able to interact with the model and run it using a web based computational environment.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.