Optimal growth in a two-sector model without discounting: a geometric investigation
Data(s) |
22/12/2014
22/12/2014
26/08/2002
|
---|---|
Resumo |
We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis. |
Identificador | |
Idioma(s) |
en_US |
Publicador |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
Relação |
Seminários de Almoço da EPGE |
Direitos |
Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveis. |
Palavras-Chave | #Economia matemática |
Tipo |
Working Paper |