Bias correction in a multivariate normal regression model with general parameterization


Autoria(s): PATRIOTA, Alexandre G.; LEMONTE, Artur J.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP (Brazil)

Identificador

STATISTICS & PROBABILITY LETTERS, v.79, n.15, p.1655-1662, 2009

0167-7152

http://producao.usp.br/handle/BDPI/30786

10.1016/j.spl.2009.04.018

http://dx.doi.org/10.1016/j.spl.2009.04.018

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Statistics & Probability Letters

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #HETEROSCEDASTIC MEASUREMENT ERRORS #NONLINEAR-REGRESSION #LINEAR-REGRESSION #ASTRONOMICAL DATA #VARIABLES #Statistics & Probability
Tipo

article

original article

publishedVersion