Bias correction in a multivariate normal regression model with general parameterization
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP (Brazil) |
Identificador |
STATISTICS & PROBABILITY LETTERS, v.79, n.15, p.1655-1662, 2009 0167-7152 http://producao.usp.br/handle/BDPI/30786 10.1016/j.spl.2009.04.018 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Statistics & Probability Letters |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #HETEROSCEDASTIC MEASUREMENT ERRORS #NONLINEAR-REGRESSION #LINEAR-REGRESSION #ASTRONOMICAL DATA #VARIABLES #Statistics & Probability |
Tipo |
article original article publishedVersion |