969 resultados para Stochastic dynamic programming
Resumo:
We analyze the classical Bertrand model when consumers exhibit some strategic behavior in deciding from which seller they will buy. We use two related but different tools. Both consider a probabilistic learning (or evolutionary) mechanism, and in the two of them consumers' behavior in uences the competition between the sellers. The results obtained show that, in general, developing some sort of loyalty is a good strategy for the buyers as it works in their best interest. First, we consider a learning procedure described by a deterministic dynamic system and, using strong simplifying assumptions, we can produce a description of the process behavior. Second, we use nite automata to represent the strategies played by the agents and an adaptive process based on genetic algorithms to simulate the stochastic process of learning. By doing so we can relax some of the strong assumptions used in the rst approach and still obtain the same basic results. It is suggested that the limitations of the rst approach (analytical) provide a good motivation for the second approach (Agent-Based). Indeed, although both approaches address the same problem, the use of Agent-Based computational techniques allows us to relax hypothesis and overcome the limitations of the analytical approach.
Resumo:
This paper aims at assessing the optimal behavior of a firm facing stochastic costs of production. In an imperfectly competitive setting, we evaluate to what extent a firm may decide to locate part of its production in other markets different from which it is actually settled. This decision is taken in a stochastic environment. Portfolio theory is used to derive the optimal solution for the intertemporal profit maximization problem. In such a framework, splitting production between different locations may be optimal when a firm is able to charge different prices in the different local markets.
Resumo:
In this paper we propose the infimum of the Arrow-Pratt index of absolute risk aversion as a measure of global risk aversion of a utility function. We then show that, for any given arbitrary pair of distributions, there exists a threshold level of global risk aversion such that all increasing concave utility functions with at least as much global risk aversion would rank the two distributions in the same way. Furthermore, this threshold level is sharp in the sense that, for any lower level of global risk aversion, we can find two utility functions in this class yielding opposite preference relations for the two distributions.
Resumo:
This paper investigates the role of variable capacity utilization as a source of asymmetries in the relationship between monetary policy and economic activity within a dynamic stochastic general equilibrium framework. The source of the asymmetry is directly linked to the bottlenecks and stock-outs that emerge from the existence of capacity constraints in the real side of the economy. Money has real effects due to the presence of rigidities in households' portfolio decisions in the form of a Luces-Fuerst 'limited participation' constraint. The model features variable capacity utilization rates across firms due to demand uncertainty. A monopolistic competitive structure provides additional effects through optimal mark-up changes. The overall message of this paper for monetary policy is that the same actions may have different effects depending on the capacity utilization rate of the economy.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.
Resumo:
BACKGROUND: Adaptations to Internal (IR) and external (ER) rotator shoulder muscles improving overhead throwing kinematics could lead to muscular strength imbalances and be considered an intrinsic risk factor for shoulder injury, as well as modified shoulder range of motion (RoM). OBJECTIVE: To establish profiles of internal and external rotation RoM and isokinetic IR and ER strength in adolescent- and national-level javelin throwers. METHODS: Fourteen healthy subjects were included in this preliminary cross-sectional study, 7 javelin throwers (JTG) and 7 nonathletes (CG). Passive internal and external rotation RoM were measured at 90 degrees of shoulder abduction. Isokinetic strength of dominant and non-dominant IR and ER was evaluated during concentric (60, 120 and 240 degrees/s) and eccentric (60 degrees/s) contractions by Con-Trex (R) dynamometer with the subject in a seated position with 45 degrees of shoulder abduction in the scapular plane. RESULTS: We reported significantly lower internal rotation and significantly higher external rotation RoM in JTG than in CG. Concentric and eccentric IR and ER strength were significantly higher for the dominant shoulder side in JTG (P < 0.05), without significant differences in ER/IR ratios. CONCLUSIONS: The main finding of this preliminary study confirmed static and dynamic shoulder stabilizer adaptations due to javelin throw practice in a population of adolescent- and national-level javelin throwers.
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
The demand for computational power has been leading the improvement of the High Performance Computing (HPC) area, generally represented by the use of distributed systems like clusters of computers running parallel applications. In this area, fault tolerance plays an important role in order to provide high availability isolating the application from the faults effects. Performance and availability form an undissociable binomial for some kind of applications. Therefore, the fault tolerant solutions must take into consideration these two constraints when it has been designed. In this dissertation, we present a few side-effects that some fault tolerant solutions may presents when recovering a failed process. These effects may causes degradation of the system, affecting mainly the overall performance and availability. We introduce RADIC-II, a fault tolerant architecture for message passing based on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) architecture. RADIC-II keeps as maximum as possible the RADIC features of transparency, decentralization, flexibility and scalability, incorporating a flexible dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-effects.
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.
Resumo:
In recent years, one of the most significant progress in the understanding of liver diseases was the demonstration that liver fibrosis is a dynamic process resulting from a balance between synthesis and degradation of several matrix components, collagen in particular. Thus, fibrosis has been found to be a very early event during liver diseases, be it of toxic, viral or parasitic origin, and to be spontaneously reversible, either partially or totally. In liver fibrosis cell matrix interactions are dependent on the existence of the many factors (sometimes acting in combination) which produce the same events at the cellular and molecular levels. These events are: (i) the recruitment of fiber-producing cells, (ii) their proliferation, (iii) the secretion of matrix constituents of the extracellular matrix, and (iv) the remodeling and degradation of the newly formed matrix. All these events represent, at least in principle, a target for a therapeutic intervention aimed at influencing the experimentally induced hepatic fibrosis. In this context, hepatosplenic schistosomiasis is of particular interest, being an immune cell-mediated granulomatous disease and a model of liver fibrosis allowing extensive studies in human and animals as well as providing original in vitro models.
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.