968 resultados para NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
Resumo:
In this review I summarise some of the most significant advances of the last decade in the analysis and solution of boundary value problems for integrable partial differential equations in two independent variables. These equations arise widely in mathematical physics, and in order to model realistic applications, it is essential to consider bounded domain and inhomogeneous boundary conditions. I focus specifically on a general and widely applicable approach, usually referred to as the Unified Transform or Fokas Transform, that provides a substantial generalisation of the classical Inverse Scattering Transform. This approach preserves the conceptual efficiency and aesthetic appeal of the more classical transform approaches, but presents a distinctive and important difference. While the Inverse Scattering Transform follows the "separation of variables" philosophy, albeit in a nonlinear setting, the Unified Transform is a based on the idea of synthesis, rather than separation, of variables. I will outline the main ideas in the case of linear evolution equations, and then illustrate their generalisation to certain nonlinear cases of particular significance.
Resumo:
Neural stem cells (NSCs) are early precursors of neuronal and glial cells. NSCs are capable of generating identical progeny through virtually unlimited numbers of cell divisions (cell proliferation), producing daughter cells committed to differentiation. Nuclear factor kappa B (NF-kappaB) is an inducible, ubiquitous transcription factor also expressed in neurones, glia and neural stem cells. Recently, several pieces of evidence have been provided for a central role of NF-kappaB in NSC proliferation control. Here, we propose a novel mathematical model for NF-kappaB-driven proliferation of NSCs. We have been able to reconstruct the molecular pathway of activation and inactivation of NF-kappaB and its influence on cell proliferation by a system of nonlinear ordinary differential equations. Then we use a combination of analytical and numerical techniques to study the model dynamics. The results obtained are illustrated by computer simulations and are, in general, in accordance with biological findings reported by several independent laboratories. The model is able to both explain and predict experimental data. Understanding of proliferation mechanisms in NSCs may provide a novel outlook in both potential use in therapeutic approaches, and basic research as well.
Resumo:
In visual tracking experiments, distributions of the relative phase be-tween target and tracer showed positive relative phase indicating that the tracer precedes the target position. We found a mode transition from the reactive to anticipatory mode. The proposed integrated model provides a framework to understand the antici-patory behaviour of human, focusing on the integration of visual and soma-tosensory information. The time delays in visual processing and somatosensory feedback are explicitly treated in the simultaneous differential equations. The anticipatory behaviour observed in the visual tracking experiments can be ex-plained by the feedforward term of target velocity, internal dynamics, and time delay in somatosensory feedback.
Resumo:
We establish an uniform factorial decay estimate for the Taylor approximation of solutions to controlled differential equations. Its proof requires a factorial decay estimate for controlled paths which is interesting in its own right.
Resumo:
We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.
Resumo:
We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.
Resumo:
In the context of controlled differential equations, the signature is the exponential function on paths. B. Hambly and T. Lyons proved that the signature of a bounded variation path is trivial if and only if the path is tree-like. We extend Hambly–Lyons' result and their notion of tree-like paths to the setting of weakly geometric rough paths in a Banach space. At the heart of our approach is a new definition for reduced path and a lemma identifying the reduced path group with the space of signatures.
Resumo:
A particle filter method is presented for the discrete-time filtering problem with nonlinear ItA ` stochastic ordinary differential equations (SODE) with additive noise supposed to be analytically integrable as a function of the underlying vector-Wiener process and time. The Diffusion Kernel Filter is arrived at by a parametrization of small noise-driven state fluctuations within branches of prediction and a local use of this parametrization in the Bootstrap Filter. The method applies for small noise and short prediction steps. With explicit numerical integrators, the operations count in the Diffusion Kernel Filter is shown to be smaller than in the Bootstrap Filter whenever the initial state for the prediction step has sufficiently few moments. The established parametrization is a dual-formula for the analysis of sensitivity to gaussian-initial perturbations and the analysis of sensitivity to noise-perturbations, in deterministic models, showing in particular how the stability of a deterministic dynamics is modeled by noise on short times and how the diffusion matrix of an SODE should be modeled (i.e. defined) for a gaussian-initial deterministic problem to be cast into an SODE problem. From it, a novel definition of prediction may be proposed that coincides with the deterministic path within the branch of prediction whose information entropy at the end of the prediction step is closest to the average information entropy over all branches. Tests are made with the Lorenz-63 equations, showing good results both for the filter and the definition of prediction.
Resumo:
In this paper we consider the strongly damped wave equation with time-dependent terms u(tt) - Delta u - gamma(t)Delta u(t) + beta(epsilon)(t)u(t) = f(u), in a bounded domain Omega subset of R(n), under some restrictions on beta(epsilon)(t), gamma(t) and growth restrictions on the nonlinear term f. The function beta(epsilon)(t) depends on a parameter epsilon, beta(epsilon)(t) -> 0. We will prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors {A(epsilon)(t) : t is an element of R}, uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at epsilon = 0. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.
Resumo:
In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.