991 resultados para Aligned ZnO Nanorods
Resumo:
Wurtzite ZnO/MgO superlattices were successfully grown on Si (001) substrates at 750 degrees C using radio-frequency reactive magnetron sputtering method. X-ray reflection and diffraction, electronic probe and photoluminescence analysis were used to characterize the multiple quantum wells (MQWs). The results showed the periodic layer thickness of the MQWs to be 1.85 to 22.3 nm. The blueshift induced by quantum confinement was observed. Least square fitting method was used to deduce the zero phonon energy of the exciton from the room-temperature photoluminescence. It was found that the MgO barrier layers has a much larger offset than ZnMgO. The fluctuation of periodic layer thickness of the MQWs was suggested to be a possible reason causing the photoluminescence spectrum broadening.
Resumo:
The pressure behavior of the ultraviolet (UV) and green emission bands in ZnO tetrapod-like micro-rods has been investigated at 300 and 70 K, respectively. The pressure coefficient of the UV band at 300 K is 24.5 meV/GPa, consistent with that of the band gap of bulk ZnO. However, the pressure coefficient of the green band is 25 meV/GPa, far larger than previous literature reports. The green band in this work originates from Cu-related emission, as confirmed by the fine structure observed in the spectra at 10 K. The pressure coefficients of four phonon replicas of the free exciton emission (FX) at 70 K are 21.0, 20.2, 19.8, and 19.3 meV/GPa, respectively. The energy shift rate of the FX emission and the LO phonon energies is then determined to be 21.4 and 0.55 meV/GPa. The pressure coefficient of the neutral donor bound exciton ((DX)-X-0) transition is 20.5 meV/GPa, only 4% smaller than that of FX. This confirms that the (DX)-X-0 emission corresponds to excitons bound to neutral shallow donors. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Nation Natural Science Foundation of China 50672079 60676027 60837001 60776007; National Basic Research Program of China (973 Program) 2007CB613404; China-MOST International Sci & Tech Cooperation and Exchange 2008DFA51230
Resumo:
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 degrees C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19 degrees with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 degrees C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R >= 3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Delta(so)| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.
Resumo:
The temperature and pressure dependences of band-edge photo luminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of k(B)T with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential.
Resumo:
As-doped p-type ZnO films were grown on GaAs by sputtering and thermal diffusion process. Hall effect measurements showed that the as-grown films were of n-type conductivity and they were converted to p-type behavior after thermal annealing. Moreover, the hole concentration of As-doped p-type ZnO was very impressible to the oxygen ambient applied during the annealing process. In addition, the bonding state of As in the films was investigated by x-ray photoelectron spectroscopy. This study not only demonstrated an effective method for reliable and reproducible p-type ZnO fabrication but also helped to understand the doping mechanism of As-doped ZnO. (c) 2006 American Institute of Physics.
Resumo:
We have successfully prepared a high-quality 2 mu m-thick GaN film with three inserted 30 nm-thick ZnO interlayers on Si (111) substrate without cracks by magnetron sputtering. The effects of the thickness and number of ZnO interlayers on the crystal quality of the GaN films were studied. It was found that the GaN crystal quality initially improved with the increase of the thickness of ZnO interlayers, but deteriorated quickly when the thickness exceeded 30 nm. Multiple ZnO interlayers were used as an effective means to further improve the crystal quality of the GaN film. By increasing the number of interlayers up to three, the cracks can be constrained to a certain extent, and the crystal quality of the GaN film greatly improved. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Low temperature (10 K) strong anti-Stokes photoluminescence (ASPL) of ZnO microcrystal excited by low power cw 532 nm laser is reported here. Energy upconversion of 1.1 eV is obtained in our experiment with no conventional nonlinear effect. Through the study of the normal photoluminescence and temperature dependence of ASPL we conclude that the green band luminescence in ZnO is related to deep donor to valance band transition. Using the two-step two-photon absorption model, we provide a plausible mechanism leading to the ASPL phenomenon in our experiment. (c) 2006 American Institute of Physics.
Resumo:
We have investigated the temperature and pressure dependences of the copper-related green emission, which show fine structure at low temperature, from tetrapodlike ZnO microrods. The temperature dependence of the green emission energy follows the changes in the band gap from 10-200 K, but deviates from this behavior above 200 K. The pressure dependence of the copper-related green band (25 +/- 5 meV/GPa) is similar to that of the band gap of ZnO, and is larger than that reported previously for defect-related green emission in ZnO. (c) 2006 American Institute of Physics.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Hamiltonian in the framework of eight-band effective-mass approximation of the zinc-blende nanowires and nanorods in the presence of external homogeneous magnetic field is given in the cylindrical coordinate. The electronic structure, optical properties, magnetic energy levels, and g factors of the nanowires and nanorods are calculated. It is found that the electron states consist of many hole-state components, due to the coupling of the conduction band and valence band. For the normal bands which are monotone functions of |k(z)|, long nanorods can be modeled by the nanowires, the energy levels of the nanorods approximately equal the values of the energy band E(k(z)) of the nanowires with the same radius at a special k(z), where k(z) is the wave vector in the wire direction. Due to the coupling of the states, some of the hole energy bands of the nanowires have their highest points at k(z)=0. Especially, the highest hole state of the InSb nanowires is not at the k(z)=0 point. It is an indirect band gap. For these abnormal bands, nanorods can not be modeled by the nanowires. The energy levels of the nanorods show an interesting plait-like pattern. The linear polarization factor is zero, when the aspect ratio L/2R is smaller than 1, and increases as the length increases. The g(z) and g(x) factors as functions of the k(z), radius R and length L are calculated for the wires and rods, respectively. For the wires, the g(z) of the electron ground state increases, and the g(z) of the hole ground state decreases first, then increases with the k(z) increasing. For the rods, the g(z) and g(x) of the electron ground state decrease as the R or the L increases. The g(x) of the hole ground state decreases, the g(z) of the hole ground state increases with the L increasing. The variation of the g(z) of the wires with the k(z) is in agreement with the variation of the g(z) of the rods with the L.
Resumo:
Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.