927 resultados para AMORPHOUS DIBLOCK COPOLYMER
Resumo:
Micronization techniques based on supercritical fluids (SCFs) are promising for the production of particles with controlled size and distribution. The interest of the pharmaceutical field in the development of SCF techniques is increasing due to the need for clean processes, reduced consumption of energy, and to their several possible applications. The food field is still far from the application of SCF micronization techniques, but there is increasing interest mainly for the processing of products with high added value. The aim of this study is to use SCF micronization techniques for the production of particles of pharmaceuticals and food ingredients with controlled particle size and morphology, and to look at their production on semi-industrial scale. The results obtained are also used to understand the processes from the perspective of broader application within the pharmaceutical and food industries. Certain pharmaceuticals, a biopolymer and a food ingredient have been tested using supercritical antisolvent micronization (SAS) or supercritical assisted atomization (SAA) techniques. The reproducibility of the SAS technique has been studied using physically different apparatuses and on both laboratory and semi-industrial scale. Moreover, a comparison between semi-continuous and batch mode has been performed. The behaviour of the system during the SAS process has been observed using a windowed precipitation vessel. The micronized powders have been characterized by particle size and distribution, morphology and crystallinity. Several analyses have been performed to verify if the SCF process modified the structure of the compound or caused degradation or contamination of the product. The different powder morphologies obtained have been linked to the position of the process operating point with respect to the vapour-liquid equilibrium (VLE) of the systems studied, that is, mainly to the position of the mixture critical point (MCP) of the mixture. Spherical micro, submicro- and nanoparticles, expanded microparticles (balloons) and crystals were obtained by SAS. The obtained particles were amorphous or with different degrees of crystallinity and, in some cases, had different pseudo-polymorphic or polymorphic forms. A compound that could not be processed using SAS was micronized by SAA, and amorphous particles were obtained, stable in vials at room temperature. The SCF micronization techniques studied proved to be effective and versatile for the production of particles for several uses. Furthermore, the findings of this study and the acquired knowledge of the proposed processes can allow a more conscious application of SCF techniques to obtain products with the desired characteristics and enable the use of their principles for broader applications.
Resumo:
In this work, we investigate heterojunction emitters deposited by Hot-Wire CVD on p-type crystalline silicon. The emitter structure consists of an n-doped film (20 nm) combined with a thin intrinsic hydrogenated amorphous silicon buffer layer (5 nm). The microstructure of these films has been studied by spectroscopic ellipsometry in the UV-visible range. These measurements reveal that the microstructure of the n-doped film is strongly influenced by the amorphous silicon buffer. The Quasy-Steady-State Photoconductance (QSS-PC) technique allows us to estimate implicit open-circuit voltages near 700 mV for heterojunction emitters on p-type (0.8 Ω·cm) FZ silicon wafers. Finally, 1 cm 2 heterojunction solar cells with 15.4% conversion efficiencies (total area) have been fabricated on flat p-type (14 Ω·cm) CZ silicon wafers with aluminum back-surface-field contact.
Resumo:
Alikriittisellä vedellä tarkoitetaan paineistettua vettä, joka on kriittisen lämpötilansa (374 °C) alapuolella nestemäisessä tilassa. Veden tiheys pienenee lämpötilan kasvaessa Veden liuotinominaisuuksia voidaan säädellä lämpötilan avulla. Veden pintajännitys, viskositeetti, tiheys ja polaarisuus pienenevät lämpötilan kasvaessa, ja alikriittisen veden aineominaisuudet muuttuvat lähemmäksi orgaanista liuotinta. Alikriittisen veden dielektrisyysvakion aleneminen johtuu pääasiassa lämpötilan vaikutuksesta ja vain vähän paineen vaikutuksesta. Alikriittistä vettä on käytetty liuottimena uutossa, mutta nyt myös alikriittinen kromatografia on kehittymässä oleva erotusmenetelmä. Työn kokeellisessa osassa kehitettiin kromatografinen laitteisto alikriittiselle vedelle, jolla tutkittiin sokerialkoholien ja sokerien kromatografista erotusta alikriittisen veden avulla. Lisäksi tutkittiin sokerialkoholien, sokereiden ja stationäärifaasien termistä kestävyyttä. Tutkittavina komponentteina olivat sorbitoli, mannitoli, ksylitoli, arabinoosi, mannoosi, ksyloosi, maltoosi ja ramnoosi. Stationäärifaaseina käytettiin makrohuokoista funktionalisoimatonta polystyreenidivinyylibentseenikopolymeeriä, sekä vahvoja ja heikkoja divinyylibentseenillä ristisilloitettuja kationinvaihtohartseja, jotka olivat joko Na+- tai Ca2+-ionimuodoissa. Veden lämpötilan nostaminen vaikuttaa sekä kromatografisen stationäärifaasin tilavuusmuutoksiin että näytekomponenttien ominaisuuksiin. Vahvoilla kationinvaihtimilla havaittiin termisten tilavuusmuutosten riippuvan ionimuodosta: Na+-muotoiset hartsit turpoavat ja Ca2+-muotoiset kutistuvat lämpötilan noustessa. Heikot kationinvaihtimet kutistuvat molemmissa ionimuodoissa, mutta Ca2+-muoto kutistuu Na+-muotoa voimakkaammin. Näytekomponenteista sokerialkoholien havaittiin kestävän paremmin korkeita lämpötiloja kuin sokerien. Sokerialkoholeista kestävimmäksi havaittiin ksylitoli ja sokereista ramnoosi. Tutkittavien komponenttien piikkien havaittiin kapenevan, häntimisen vähenevän, ja piikkien eluoituvan aikaisemmin riippuen käytettävästä stationäärifaasista. Ca2+-muotoisen vahvan kationinvaihtimen kompleksinmuodostuskyky heikkeni lämpötilan kasvaessa. Näytekomponenttien erotus ei kuitenkaan parantunut lämpötilan noustessa tutkituilla stationäärifaaseilla.
Resumo:
We present tunneling experiments on Fe~001!/MgO~20 Å!/FeCo~001! single-crystal epitaxial junctions of high quality grown by sputtering and laser ablation. Tunnel magnetoresistance measurements give 60% at 30 K, to be compared with 13% obtained recently on ~001!-oriented Fe/amorphous-Al2O3 /FeCo tunnel junctions. This difference demonstrates that the spin polarization of tunneling electrons is not directly related to the density of states of the free metal surface Fe~001! in this case but depends on the actual electronic structure of the entire electrode/barrier system.
Resumo:
Hot-Wire Chemical Vapor Deposition has led to microcrystalline silicon solar cell efficiencies similar to those obtained with Plasma Enhanced CVD. The light-induced degradation behavior of microcrystalline silicon solar cells critically depends on the properties of their active layer. In the regime close to the transition to amorphous growth (around 60% of amorphous volume fraction), cells incorporating an intrinsic layer with slightly higher crystalline fraction and [220] preferential orientation are stable after more than 7000 h of AM1.5 light soaking. On the contrary, solar cells whose intrinsic layer has a slightly lower crystalline fraction and random or [111] preferential orientation exhibit clear light-induced degradation effects. A revision of the efficiencies of Hot-Wire deposited microcrystalline silicon solar cells is presented and the potential efficiency of this technology is also evaluated.
Resumo:
Infrared spectroscopy was used to characterize three series of a-Si:H/a-Si1-xCx:H multilayers in which their geometrical parameters were varied. The infrared active vibrational groups in their spectra and the interference fringes in their absorption-free zone were studied to analyze the interfaces and the changes that are produced in very thin layers. Our results show that hydrogen is bonded to silicon only in monohydride groups. No additional hydrogen could be detected at these interfaces. The deposition of very thin a-Si1-xCx:H layers seems to affect their porous structure, making them denser.
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.
Resumo:
In this paper, the influence of the deposition conditions on the performance of p-i-n microcrystalline silicon solar cells completely deposited by hot-wire chemical vapor deposition is studied. With this aim, the role of the doping concentration, the substrate temperature of the p-type layer and of amorphous silicon buffer layers between the p/i and i/n microcrystalline layers is investigated. Best results are found when the p-type layer is deposited at a substrate temperature of 125 °C. The dependence seen of the cell performance on the thickness of the i layer evidenced that the efficiency of our devices is still limited by the recombination within this layer, which is probably due to the charge of donor centers most likely related to oxygen.
Resumo:
Hydrogenated nanocrystalline silicon thin-films were obtained by catalytic chemical vapour deposition at low substrate temperatures (150°C) and high deposition rates (10 Å/s). These films, with crystalline fractions over 90%, were incorporated as the active layers of bottom-gate thin-film transistors. The initial field-effect mobilities of these devices were over 0.5 cm 2/V s and the threshold voltages lower than 4 V. In this work, we report on the enhanced stability of these devices under prolonged times of gate bias stress compared to amorphous silicon thin-film transistors. Hence, they are promising candidates to be considered in the future for applications such as flat-panel displays.
Resumo:
We have studied the effect of pressure on the structural and vibrational properties of lanthanum tritungstate La2(WO4)3. This compound crystallizes under ambient conditions in the modulated scheelite-type structure known as the α phase. We have performed x-ray diffraction and Raman scattering measurements up to a pressure of 20 GPa, as well as ab initio calculations within the framework of the density functional theory. Up to 5 GPa, the three methods provide a similar picture of the evolution under pressure of α-La2(WO4)3. At 5 GPa, we begin to observe some structural changes, and above 6 GPa we find that the x-ray patterns cannot be indexed as a single phase. However, we find that a mixture of two phases with C2/c symmetry accounts for all diffraction peaks. Our ab initio study confirms the existence of several C2/c structures, which are very close in energy in this compression range. According to our measurements, a state with medium-range order appears at pressures above 9 and 11 GPa, from x-ray diffraction and Raman experiments, respectively. Based upon our theoretical calculations we propose several high-pressure candidates with high cationic coordinations at these pressures. The compound evolves into a partially amorphous phase at pressures above 20 GPa.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.
Resumo:
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.