997 resultados para infrared parametric laser
Resumo:
The expansion dynamics of the ablation plume generated by KrF laser irradiation of hydroxyapatite targets in a 0.1 mbar water atmosphere has been studied by fast intensified charge coupled device imaging with the aid of optical bandpass filters. The aim of the filters is to isolate the emission of a single species, which allows separate analysis of its expansion. Images obtained without a filter revealed two emissive components in the plume, which expand at different velocities for delay times of up to 1.1 ¿s. The dynamics of the first component is similar to that of a spherical shock wave, whereas the second component, smaller than the first, expands at constant velocity. Images obtained through a 520 nm filter show that the luminous intensity distribution and evolution of emissive atomic calcium is almost identical to those of the first component of the total emission and that there is no contribution from this species to the emission from the second component of the plume. The analysis through a 780 nm filter reveals that atomic oxygen partially diffuses into the water atmosphere and that there is a contribution from this species to the emission from the second component. The last species studied here, calcium oxide, was analyzed by means of a 600 nm filter. The images revealed an intensity pattern more complex than those from the atomic species. Calcium oxide also contributes to the emission from the second component. Finally, all the experiments were repeated in a Ne atmosphere. Comparison of the images revealed chemical reactions between the first component of the plume and the water atmosphere.
Resumo:
Epitaxial thin films of Y¿doped SrZrO3 have been grown on MgO(001) by pulsed laser deposition. The deposition process has been performed at temperatures of 1000¿1200¿°C and at an oxygen pressure of 1.5×10¿1 mbar. The samples are characterized by Rutherford backscattering spectrometry/channeling (RBS/C) and x¿ray diffraction (XRD). We found an epitaxial relationship of SrZrO3 (0k0) [101]¿MgO (001) [100]. Good crystalline quality is confirmed by RBS/C minimum yield values of 9% and a FWHM of 0.35° of the XRD rocking curve.
Resumo:
In this study, we have performed magneto-optical Kerr effect (MOKE) measurement on epitaxial La2/3Sr1/3MnO3 thin films containing artificial interfaces created by laser-patterning the SrTiO3 substrate. The observed increase of the resistivity and of the high-field magnetoresistance when measuring the films across the interface arrays are related to the reduction of the magnetization of the interfaces with respect to the rest of the film. As observed by the local MOKE probe, the structural disorder in the manganite film induced by the underlying patterned substrate leads to a large spin disorder responsible for a strong high-field susceptibility of the resistance.
Resumo:
Laser-induced forward transfer (LIFT) is a laser direct-write technique that offers the possibility of printing patterns with a high spatial resolution from a wide range of materials in a solid or liquid state, such as conductors, dielectrics, and biomolecules in solution. This versatility has made LIFT a very promising alternative to lithography-based processes for the rapid prototyping of biomolecule microarrays. Here, we study the transfer process through the LIFT of droplets of a solution suitable for microarray preparation. The laser pulse energy and beam size were systematically varied, and the effect on the transferred droplets was evaluated. Controlled transfers in which the deposited droplets displayed optimal features could be obtained by varying these parameters. In addition, the transferred droplet volume displayed a linear dependence on the laser pulse energy. This dependence allowed determining a threshold energy density value, independent of the laser focusing conditions, which acted as necessary conditions for the transfer to occur. The corresponding sufficient condition was given by a different total energy threshold for each laser beam dimension. The threshold energy density was found to be the dimensional parameter that determined the amount of the transferred liquid per laser pulse, and there was no substantial loss of material due to liquid vaporization during the transfer.
Resumo:
Time-resolved imaging is carried out to study the dynamics of the laser-induced forward transfer of an aqueous solution at different laser fluences. The transfer mechanisms are elucidated, and directly correlated with the material deposited at the analyzed irradiation conditions. It is found that there exists a fluence range in which regular and well-defined droplets are deposited. In this case, laser pulse energy absorption results in the formation of a plasma, which expansion originates a cavitation bubble in the liquid. After the further expansion and collapse of the bubble, a long and uniform jet is developed, which advances at a constant velocity until it reaches the receptor substrate. On the other hand, for lower fluences no material is deposited. In this case, although a jet can be also generated, it recoils before reaching the substrate. For higher fluences, splashing is observed on the receptor substrate due to the bursting of the cavitation bubble. Finally, a discussion of the possible mechanisms which lead to such singular dynamics is also provided.
Resumo:
A simple, low-cost accessory (patent pending) with only two flat mirrors and a new variable-angle mechanism has been developed for infrared specular reflectance measurements. The system allows the angles of incidence to be varied continuously from 15° (near normal incidence) to 85° (near grazing angle) without losing the alignment of the accessory. The reflectivity of boron nitride thin films deposited on metallic substrates has been measured at different angles of incidence to demonstrate the utility of this accessory.
Resumo:
Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.
Resumo:
Polycrystalline Ni-Mn-Ga thin films have been deposited by the pulsed laser deposition (PLD) technique, using slices of a Ni-Mn-Ga single crystal as targets and onto Si (100) substrates at temperatures ranging from 673 K up to 973 K. Off-stoichiometry thin films were deposited at a base pressure of 1×10-6-Torr or in a 5 mTorr Ar atmosphere. Samples deposited in vacuum and temperatures above 823 K are magnetic at room temperature and show the austenitic {220} reflection in their x-ray diffraction patterns. The temperature dependences of both electrical resistance and magnetic susceptibility suggest that these samples exhibit a structural martensitic transition at around 260 K. The magnetoresistance ratio at low temperature can be as high as 1.3%, suggesting the existence of a granular structure in the films
Resumo:
When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.
Resumo:
Background: To evaluate outcomes after optimized laser in situ keratomileusis (LASIK) for astigmatism correction with flap created by a mechanical microkeratome or a femtosecond laser. Patients and Methods: In this retrospective study, a total of 102 eyes of 71 consecutive patients were enrolled undergoing optimized LASIK treatments using the Allegretto laser system (WaveLight Laser Technologie AG, Erlangen, Germany). A mechanical microkeratome for flap creation was used (One Use, Moria®) in 46 eyes (31 patients, spherical equivalent [SE] -4.44 D ± 2.4) and a femtosecond laser was used (LDV, Ziemer®) in 56 eyes (40 patients, spherical equivalent [SE] -3.07 D ± 3.3). The two groups were matched for inclusion criteria and were operated under similar conditions by the same surgeon. Results: Overall, the preoperative spherical equivalent was -9.5 diopters (D) to +3.37 D; the preoperative manifest astigmatism was between -1.5 D and -3.5 D. At 6 months postoperatively, the mean postoperative uncorrected distance visual acuity (UDVA) was 0.93 ± 0.17 (range 0.4 to 1.2) in the Moria group and 1.0 ± 0.21 (range 0.6 to 1.6) in the Femto group, which was statistically significant (p = 0.003). Comparing the cylinder power there was a statistical difference between the two groups (p = 0.0015). Conclusions: This study shows that the method of flap creation has a significant impact on postoperative astigmatism with a significantly better postoperative UDVA in the Femto group. These findings suggest that the femtosecond laser provides a better platform for LASIK treatment of astigmatism than the commonly used microkeratome.