978 resultados para arsenite, leiteite, reinerite, Raman Spectroscopy, single crystal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a new form of nonlinear Raman spectroscopy called `ultrafast Raman loss spectroscopy (URLS)'. URLS is analogous to stimulated Raman spectroscopy (SRS) but is much more sensitive than SRS. The signals are background (noise) free unlike in coherent anti-Stokes Raman spectroscopy (CARS) and it provides natural fluorescence rejection, which is a major problem in Raman spectroscopy. In addition, being a self-phase matching process, the URLS experiment is much easier than CARS, which requires specific phase matching of the laser pulses. URLS is expected to be alternative if not competitive to CARS microscopy, which has become a popular technique in applications to materials, biology and medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical shifts in the X-ray K-absorption edge of strontium in various compounds and in six minerals are measured using a single crystal X-ray spectrometer. Besides valence, the shifts are found to be governed by ionic charges on the absorbing ions, which are calculated employing Pauling's method. For the minerals the plot of chemical shift against the theoretically calculated ionic charges is used to determine the charges on the strontium ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new coordination polymers [Cu(L-1)(2)](n)(ClO4)(n)center dot 2nH(2)O (1), [Cu(L-2)(2)](n)(ClO4)(n)center dot 2nH(2)O (2) of polydentate imine/pyridyl ligands, L-1 and L-2 with Cu(I) ion have been synthesized and characterized by single crystal X-ray diffraction studies, elemental analyses, IR' UV-vis and NMR spectroscopy. They represent 3-dimensional, sixfold interpenetrating diamondoid network structures having large pores of dimension, 35 x 21 angstrom(2) in 1 and 38 x 19 angstrom(2) in 2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexes, cis-(CO)-trans-(Cl)-[Ru(SRaaiNR)(CO)(2)Cl-2] (2) and trans-(Cl)-[Ru(SRaaiNR)(CO)Cl-2] (3) (SRaaiNR = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles; R = Me (1a) and Et (1b)) have been synthesized and characterized. The structural confirmation is achieved by single crystal X-ray structure determinations. The complexes show Ru(III)/Ru(II) couple and ligand reductions. Electronic structure and spectral properties of the complexes have been explained with the DFT and TDDFT calculation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectrum of a single crystal of ammonium sulphamate has been recorded for the two different orientations using λ 2537 resonance radiation of the mercury as the exciter. Thirty-four Raman lines have been observed of which eight belong to the lattice oscillations. Weak hydrogen bonding of NH2 group in the crystal was predicted. The infra-red absorption spectrum of the substance was taken in the powder form in potassium bromide disc, using Carl Zeiss UR10 IR spectrometer. Thirty-five absorption maxima could be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectrum of a single crystal of potassium sulphamate has been recorded for the first time using λ 2536 radiation of mercury as the exciter. Thirty-three Raman lines have been observed of which nine belong to the lattice oscillations. The infra-red absorption spectrum of the substance was taken in the powder form in potassium bromide disc using Carl Zeiss UR 10 IR spectrometer. Thirty-six absorption maxima could be identified of which twenty-five have been recorded for the first time. The analysis clearly shows that the N-H bond in the crystalline potassium sulphamate is not hydrogen-bonded to any appreciable extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of a single crystal of sulphamic acid has been recorded withλ 2537 excitation. Thirty-eight lines have been observed, of which twenty-nine have been recorded for the first time. Seven Raman lines with shifts in the region 50–155 cm.−1 have been assigned to the lattice oscillations, two at 177 and 240 cm.−1 have been attributed to the low-frequency hydrogen bond vibrations.. The splitting of the degenerate modes and the appearance of N-H....O bonded stretching vibrations are consistent with the structural data which expect the presence of the free molecule as a Zwitter ion with only slight distortion from C3v symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of a single crystal of cadmium acetate dihydrate has been recorded for the first time using λ 2537 excitation. Twenty-three lines have been observed out of which ten have been attributed to the internal oscillations of the acetate ion, nine to the lattice modes, two to low-frequency hydrogen bond vibrations. A line at 308 cm.−1 and the continuum 3250–3560 cm.−1 have been assigned to the Cd-O6 and internal vibrations of the water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of hydroxylamine hydrochloride (NH3OH.Cl) in the form of a single crystal has been photographed usingλ 2536·5 excitation. 32 Raman lines with frequency shifts 40, 57, 78, 88, 111, 125, 135, 156, 187, 217, 250, 330, 550, 575, 1004, 1168, 1204, 1470, 1496, 1565, 1590, 1979, 2636, 2710, 2750, 2789, 2926, 2970, 3000, 3050, 3141 and 3220 cm.−1 have been recorded. Of these, the first 8 low-frequency lines belong to the external oscillation, while the four lines at 187, 217, 250 and 330 cm.−1 should be attributed to the vibrations of the hydrogen bond valence vibrations. The remaining Raman lines have been assigned to the vibrations of the NH3OH ion. The O-H and N-H stretching vibrations are very much influenced by the presence of the hydrogen bonds in the crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of diglycine barium chloride monohydrate in the single crystal form has been recorded using λ 2536·5 excitation. 43 Raman lines (9 lattice and 34 internal) have been recorded. Satisfactory assignments have been given for most of the observed Raman lines. It is concluded from a comparison of the Raman spectrum of this compound with those of glycine and of other addition compounds of glycine, that the glycine unit exists in the zwitterion form in the structure of diglycine barium chloride monohydrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of a single crystal of triglycine selenate G3Se which is ferroelectric below 22° C. has been photographed using λ 2537 excitation. 42 Raman lines have been recorded of which 6 belong to the lattice spectrum, 3 are due to NH...O oscillations and the remaining 33 are due to internal oscillations of the ions of glycine and SeO4--. There is a close similarity between the spectrum of triglycine selenate and the spectrum of its isomorph, triglycine sulphate, the frequency shifts due to the SO4-- ion being replaced by the frequency shifts due to the SeO4-- ion. The existence of glycine in the zwitterion form in the structure of G3Se is substantiated by the appearance in the Raman spectrum of lines which are attributable to NH3+ groups and COO- groups. The appearance of the additional C-H line at 2982 cm.-1 in the spectrum of triglycine selenate which is absent in the spectrum of α-glycine indicates the existence of planar monoprotonated glycine also in the structure, as indicated by X-ray studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectrum of a single crystal of sodium iodide has been recorded for the first time using lambda 2537 excitation. The general features of the spectrum are discussed in the light of the existing theories on the dynamics of the alkali halides. The authors wish to thank Professor D.Y.Phadke of the Tata Institute of Fundamental Research, Bombay, for presenting the crystal of Nal used in the present investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectrum of a single crystal of lanthanum ethyl sulphate has been recorded for the first time using the λ 2537 radiation Forty-one lines have been identified out of which eight belong to the lattice oscillations, seven to the internal vibrations of the water molecule and the remaining twenty-six to the internal vibrations of the ethyl sulphate group. The Raman spectrum of ethyl sulphate (liquid) has also been recorded using the λ 4358 excitation and is compared with the spectrum of lanthanum ethyl sulphate. Thirty Raman lines could be identified in the spectrum of ethyl sulphate, of which fourteen are recorded for the first time. Probable assignments of the observed frequencies are also given. The sulphate group is found to have O-SO3 structure in lanthanum ethyl sulphate, while it has a co-ordination {Mathematical expression} in ethyl sulphate.