943 resultados para Weakly Hyperbolic Equations
Resumo:
In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.
Resumo:
Fundamental principles of mechanics were primarily conceived for constant mass systems. Since the pioneering works of Meshcherskii (see historical review in Mikhailov (Mech. Solids 10(5):32-40, 1975), efforts have been made in order to elaborate an adequate mathematical formalism for variable mass systems. This is a current research field in theoretical mechanics. In this paper, attention is focused on the derivation of the so-called 'generalized canonical equations of Hamilton' for a variable mass particle. The applied technique consists in the consideration of the mass variation process as a dissipative phenomenon. Kozlov's (Stek. Inst. Math 223:178-184, 1998) method, originally devoted to the derivation of the generalized canonical equations of Hamilton for dissipative systems, is accordingly extended to the scenario of variable mass systems. This is done by conveniently writing the flux of kinetic energy from or into the variable mass particle as a 'Rayleigh-like dissipation function'. Cayley (Proc. R Soc. Lond. 8:506-511, 1857) was the first scholar to propose such an analogy. A deeper discussion on this particular subject will be left for a future paper.
Resumo:
We propose a novel mathematical approach for the calculation of near-zero energy states by solving potentials which are isospectral with the original one. For any potential, families of strictly isospectral potentials (with very different shape) having desirable and adjustable features are generated by supersymmetric isospectral formalism. The near-zero energy Efimov state in the original potential is effectively trapped in the deep well of the isospectral family and facilitates more accurate calculation of the Efimov state. Application to the first excited state in He-4 trimer is presented.
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' threshold theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We prove a periodic averaging theorem for generalized ordinary differential equations and show that averaging theorems for ordinary differential equations with impulses and for dynamic equations on time scales follow easily from this general theorem. We also present a periodic averaging theorem for a large class of retarded equations.
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we establish the existence of many rotationally non-equivalent and nonradial solutions for the following class of quasilinear problems (p) {-Delta(N)u = lambda f(vertical bar x vertical bar, u) x is an element of Omega(r), u > 0 x is an element of Omega(r), u = 0 x is an element of Omega(r), where Omega(r) = {x is an element of R-N : r < vertical bar x vertical bar < r + 1}, N >= 2, N not equal 3, r >0, lambda > 0, Delta(N)u = div(vertical bar del u vertical bar(N-2)del u) is the N-Laplacian operator and f is a continuous function with exponential critical growth.
Resumo:
This paper is concerned with the existence of multi-bump solutions to a class of quasilinear Schrodinger equations in R. The proof relies on variational methods and combines some arguments given by del Pino and Felmer, Ding and Tanaka, and Sere.
Resumo:
In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.
Resumo:
In this paper we introduce a new class of abstract integral equations which enables us to study in a unified manner several different types of differential equations. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.
Resumo:
A mathematical model and numerical simulations are presented to investigate the dynamics of gas, oil and water flow in a pipeline-riser system. The pipeline is modeled as a lumped parameter system and considers two switchable states: one in which the gas is able to penetrate into the riser and another in which there is a liquid accumulation front, preventing the gas from penetrating the riser. The riser model considers a distributed parameter system, in which movable nodes are used to evaluate local conditions along the subsystem. Mass transfer effects are modeled by using a black oil approximation. The model predicts the liquid penetration length in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The method of characteristics is used to simplify the differentiation of the resulting hyperbolic system of equations. The equations are discretized and integrated using an implicit method with a predictor-corrector scheme for the treatment of the nonlinearities. Simulations corresponding to severe slugging conditions are presented and compared to results obtained with OLGA computer code, showing a very good agreement. A description of the types of severe slugging for the three-phase flow of gas, oil and water in a pipeline-riser system with mass transfer effects are presented, as well as a stability map. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.