MULTIPLICITY OF NONRADIAL SOLUTIONS FOR A CLASS OF QUASILINEAR EQUATIONS ON ANNULUS WITH EXPONENTIAL CRITICAL GROWTH


Autoria(s): Alves, Claudianor O.; Freitas, Luciana Roze de
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

04/11/2013

04/11/2013

2012

Resumo

In this paper, we establish the existence of many rotationally non-equivalent and nonradial solutions for the following class of quasilinear problems (p) {-Delta(N)u = lambda f(vertical bar x vertical bar, u) x is an element of Omega(r), u > 0 x is an element of Omega(r), u = 0 x is an element of Omega(r), where Omega(r) = {x is an element of R-N : r < vertical bar x vertical bar < r + 1}, N >= 2, N not equal 3, r >0, lambda > 0, Delta(N)u = div(vertical bar del u vertical bar(N-2)del u) is the N-Laplacian operator and f is a continuous function with exponential critical growth.

Identificador

TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, TORUN, v. 39, n. 2, supl. 1, Part 1-2, pp. 243-262, JUN, 2012

1230-3429

http://www.producao.usp.br/handle/BDPI/40853

Idioma(s)

eng

Publicador

JULIUSZ SCHAUDER CTR NONLINEAR STUDIES

TORUN

Relação

TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS

Direitos

restrictedAccess

Copyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES

Palavras-Chave #VARIATIONAL METHODS #POSITIVE SOLUTIONS #QUASILINEAR EQUATIONS #SEMILINEAR ELLIPTIC-EQUATIONS #POSITIVE SOLUTIONS #EXISTENCE #PRINCIPLE #MATHEMATICS
Tipo

article

original article

publishedVersion