MULTIPLICITY OF NONRADIAL SOLUTIONS FOR A CLASS OF QUASILINEAR EQUATIONS ON ANNULUS WITH EXPONENTIAL CRITICAL GROWTH
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
04/11/2013
04/11/2013
2012
|
Resumo |
In this paper, we establish the existence of many rotationally non-equivalent and nonradial solutions for the following class of quasilinear problems (p) {-Delta(N)u = lambda f(vertical bar x vertical bar, u) x is an element of Omega(r), u > 0 x is an element of Omega(r), u = 0 x is an element of Omega(r), where Omega(r) = {x is an element of R-N : r < vertical bar x vertical bar < r + 1}, N >= 2, N not equal 3, r >0, lambda > 0, Delta(N)u = div(vertical bar del u vertical bar(N-2)del u) is the N-Laplacian operator and f is a continuous function with exponential critical growth. |
Identificador |
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, TORUN, v. 39, n. 2, supl. 1, Part 1-2, pp. 243-262, JUN, 2012 1230-3429 |
Idioma(s) |
eng |
Publicador |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES TORUN |
Relação |
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS |
Direitos |
restrictedAccess Copyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
Palavras-Chave | #VARIATIONAL METHODS #POSITIVE SOLUTIONS #QUASILINEAR EQUATIONS #SEMILINEAR ELLIPTIC-EQUATIONS #POSITIVE SOLUTIONS #EXISTENCE #PRINCIPLE #MATHEMATICS |
Tipo |
article original article publishedVersion |