889 resultados para Solid state synthesis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar fuels from CO2 is a topic of current large scientific and industrial interest. In particular, photo-electrochemical cells (PECs) represent today one of the most promising technology for storing sun energy as chemical bonds exploiting carbon dioxide as starting reagent. In this thesis, the possibility of using Aurivillius-type compounds for the production of solar fuels was deeply investigated. Aurivillius-type perovskites, with general formula Bi(n+1)Fe(n-3)Ti3O(3n+3), were synthesized and fully characterized to study the influence of the number of perovskite layers as well as of the synthesis parameters onto their final properties. In particular, 8 different systems were considered increasing the amount of iron and, as a consequence, the number of perovskite layers. These compounds were synthesized through a standard solid-state reaction method as well as via a sol-gel technique and characterized by XRD, SEM and BET analyses. The band gap value and the photocatalytic activity towards Rhodamine B decomposition were assessed as well. For each system, a screen-printing ink was formulated to be deposited as photo-electrodes onto transparent conducting supports. The photo-electrodes were morphologically characterized by XRD and SEM analysis, and their electrochemical properties (cyclic and linear voltammetry, EIS, Mott-Schottky analysis) were determined. Finally, the most promising materials were tested as photo-cathode inside PEC cell under different illumination conditions, to quantify their ability to convert CO2. The obtained results show the potentiality of Aurivillius-type compounds as innovative material for carbon dioxide photo-electrochemical reduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solid state engineered materials have proven to be useful and suitable tools in the quest of new materials. In this thesis different crystalline compounds were synthesized to provide more sustainable products for different applications, as in cosmetics or in agrochemistry, to propose pollutants removal strategy or to obtain materials for electrocatalysis. Therefore, the research projects presented here can be divided into three main topics: (i) sustainable preparation of solid materials of widely used active ingredients aimed at the reduction of their occurrence in the natural environment. The systems studied in this section are cyclodextrins host-guest compounds, obtained via mechanochemical and slurry synthesis. The first chemicals studied are sunscreens inclusion complexes, that proved to have enhanced photostability and desired photoprotection. The same synthetic methods were applied to obtain inclusion complexes of bentazon, a herbicide often found to leach in groundwaters. The resulting products showed to have desired water solubility properties. The same herbicide was also adsorbed on amorphous calcium phosphate nanoparticles, to obtain a biocompatible formulation of this agrochemical. This herbicide could benefit by the adsorption on nanoparticles for what concerns its kinetic release in different media as well as its photostability. (ii) Sustainable synthesis of co-crystals based on polycyclic aromatic hydrocarbons, for the proposal of a sequestering method with a resulting material with enhanced properties. The co-crystallization via mechanochemical means proved that these pollutants can be sequestered via simple solvent-free synthesis and the obtained materials present better photochemical properties when compared to the starting co-formers. (iii) Crystallization from mild solvents of nanosized materials useful for the application in electrocatalysis. The study of compounds based on nickel and cobalt metal ions resulted in the obtainment of 2D and 1D coordination polymers. Moreover, solid solutions were obtained. These crystals showed layered structures and, according to preliminary results, they can be exfoliated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This PhD thesis summarize the work carried out during three years of PhD course. Several thematic concerning gold(I) chemistry are analysed by crossing data from different chemistry areas as: organic chemistry, organometallic chemistry, inorganic chemistry and computational chemistry. In particular, the thesis focuses its attention on the evaluation of secondary electronic interactions, subsisting between ligand and Au(I) metal centre in the catalyst, and their effects on catalytic activity. The interaction that has been taken in consideration is the Au…Ar π-interaction which is known to prevent the decomposition of catalyst, but exhaustive investigations of further effects has never been done so far. New libraries of carbene (ImPy) and biarylphosphine ligands have been designed and synthetized for the purpose and subsequently utilized for the synthesis of corresponding Au(I) complexes. Resulting catalysts are tested in various catalytic processes involving different intermediates and in combination with solid state information from SC-XRD revealed an unprecedented activation mode which is only explained by considering both electronic nature and strength of Au…Ar π-interaction. DFT calculation carried on catalysis intermediates are in agreement with experimental ones, giving robustness to the theory. Moreover, a new synthetic protocol for the lactonization of N-allenyl indole-2-carboxylic acids is presented. Reaction conditions are optimized with the newly synthetized ImPy-Au(I) catalysts and different substrates are also tested providing a quite broad reaction scope. Chiral ImPy ligands have also been developed for the asymmetric variant of the same reaction and encouraging enantiomeric excess are obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research project of my experimental thesis deals with the design, synthesis and characterization of a new series of luminescent metallapolymers to be exploited for their peculiar photophysical and opto-electronic properties. To this end, our design strategy consisted in the incorporation of brightly luminescent and colour tuneable Ir(III) cyclometalated complexes with general formula [Ir(C^N)2(N^N)]+, where C^N represents various phenyl piridine based cyclometalating ligands and N^N is an aromatic chelating N-heterocyle, into methyl methacrylate (MMA) based copolymers. Whereas the choice of the cyclometalating ligands was driven by the possibility to obtain different emission colours, the design of the N^N ligands was aimed to obtain a molecule capable of providing the chelate coordination to the metal centre and, at the same time, of being susceptible to polymerisation reactions. To fulfil these requirements, a new molecule (abbreviated as L) consisting in an alkylated 2-pyrydyl tetrazole structure equipped with a styryl unit was designed and successfully prepared. The preparation of the target cationic metallapolymers was accomplished by the complexation of the preformed MMA-L copolymers with different amounts of an appropriate Ir(III) dimeric precursor [(Ir(C^N)2Cl)2]. The investigation of the photophysical features of the new hybrid compounds in the solid state at r.t. suggested how these metallapolymers displayed brightly intense phosphorescent emissions, whose colour was found to span from blue to yellow according to the nature of the cyclometalating ligands. In all cases, the emissive performances were superior to those displayed by the corresponding mononuclear “model” complexes. These promising results pave the way for the application of this new class of metallapolymers as Luminescent Solar Concentrators for the photovoltaic technology and/or to solid state lighting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports the photophysical properties (excitation and fluorescence spectra, fluorescence quantum yield, fluorescence lifetimes) of the poly(2,7-9,9'-dihexylfluorene-dyil) in dilute solutions of four solvents (toluene, tetrahydrofuran, chloroform and ethyl acetate) as well as the properties in solid state. Photoluminescence showed spectra characteristic of disordered α-backbone chain conformation. Simulation of the electronic absorption spectra of oligomers containing 1 to 11 mers showed that the critical conjugation length is between 6 and 7 mers. We also estimated the theoretical dipole moments which indicated that a coil conformation is formed with 8 repeating units per turn. We also showed that some energy transfer process appears in solid state which decreases the emission lifetime. Furthermore, based on luminescent response of the systems herein studied and electroluminescent behavior reported on literature, both photo and electroluminescence emissions arise from the same emissive units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental interaction for electrons is their hyperfine interaction (HFI) with nuclear spins. HFI is well characterized in free atoms and molecules, and is crucial for purposes from chemical identification of atoms to trapped ion quantum computing. However, electron wave functions near atomic sites, therefore HFI, are often not accurately known in solids. Here we perform an all-electron calculation for conduction electrons in silicon and obtain reliable information on HFI. We verify the outstanding quantum spin coherence in Si, which is critical for fault-tolerant solid state quantum computing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk Zn(1-x)Co(x)O samples were synthesized via standard solid-state reaction route with different Co molar concentrations up to 21%. A detailed microstructural analysis was carried out to investigate alternative sources of ferromagnetism, such as secondary phases and nanocrystals embedded in the bulk material. Conjugating different techniques we confirmed the Zn replacement by Co ions in the wurtzite ZnO structure, which retains, however, a high crystalline quality. No segregated secondary phases neither Co-rich nanocrystals were detected. Superconducting quantum interference device magnetometry demonstrates a paramagnetic Curie-Weiss behavior with antiferromagnetic interactions. We discuss the observed room temperature paramagnetism of our samples considering the current models for the magnetic properties of diluted magnetic semiconductors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3459885]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.