Hall Effect and transient surface photovoltage (SPV) study of Cu3BiS3 thin films


Autoria(s): Mesa, Fredy
Contribuinte(s)

Dussan, Anderson

Paez Sierra, Beynor

Rodríguez Hernández, H.

NANOTECH

Data(s)

04/04/2014

Resumo

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Here, we present the electrical properties of the compound Cu3BiS3 deposited by co-evaporation. This new compound may have the properties necessary to be used as an absorbent layer in solar cells. The samples were characterized by Hall effect and transient surface photovoltage (SPV) measurements. Using Hall effect measurements, we found that the concentration of n charge carriers is in the order of 1016 cm-3 irrespective of the Cu/Bi mass ratio. We also found that the mobility of this compound (μ in the order of 4 cm2V-1s-1) varies according to the transport mechanisms that govern it and are dependent on temperature. Based on the SPV, we found a high density of surface defects, which can be passivated by superimposing a buffer layer over the Cu3BiS3 compound.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/12554

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

American Society for Testing and Materials (1991) Annual Book of ASTM Standards 10.05

Bar M, Weinhardt L, Pookpanratana S, Heske C, Nishiwaki S et al. (2008) Band gap energy of chalcopyrite thin film solar cell absorbers determined by soft x-ray emission and absorption spectroscopy. Photovoltaic Specialists Conference, 2008 PVSC '08. 33rd IEEE:1-4 doi: 10.1109/PVSC.2008.4922728

Colombara D, Peter LM, Hutchings K, Rogers KD, Schäfer S et al. (2012) Formation of Cu3BiS3 thin films via sulfurization of Bi-Cu metal precursors. Thin Solid Films 520(16):5165-5171 http://dx.doi.org/10.1016/j. tsf.2012.04.003

Contreras M, Egaas B, Ramanathan R, Hiltner J, Awarzlander A et al. (2009) “Progress toward 20% efficiency in Cu (In,Ga)Se2 polycrystalline thin-film solar cells”. Progress in Photovoltaics: Research and Applications 7:311-316

Choi IH, Choi CH, Lee JW (2012) Deep centers in a CuInGaSe2/CdS/ZnO: B solar cell. Physica Status Solidi A 209:1192-1197 doi: 10.1002/pssa.201127596

Estrella V, Nair MT, Nair PK (2003) Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films. Semiconductor Science and Technology 18:190-194 doi:10.1088/0268- 1242/18/2/322

Fu Y, Rada T, Fischer CH, Lux-Steiner MCh, Dittrich T (2014) Surface photovoltage spectroscopy on Cu (In,Ga)(S,Se)2/ZnS-nanodot/In2S3 systems. Progress in Photovoltaics: Research and Applications 22:44-50 doi: 10.1002/pip.2305

Gerein N, Haber J (2006) One-Step Synthesis and Optical and Electrical Properties of Thin Film Cu3BiS3 for Use as a Solar Absorber in Photovoltaic Devices. Chemestry of Materials 18:6297-6302 doi: 10.1021/cm061453r

Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications 20:606- 614 doi: 10.1002/pip.2267

Gutiérrez D, Villada A, Tirado L, Codoy H, Cordoba M et al. (2007) Determinación de concentración de portadores y altura de la barrera schottky en películas semiconductoras del sistema GaInAsSb. Revista Colombiana de Física 39(1):147-150

Kayes BM, Hui N, Twist R, Spruytte SG, Reinhardt F et al. (2011) 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Higashi: presented at 37th IEEE Photovoltaic Specialists Conf., 2011 doi: 10.1109/PVSC.2011.6185831

Kawamura M, Fujita T, Yamada A, Konagai M (2009) CIGS thin-film solar cells grown with cracked selenium. Journal of Crystal Growth 311(3):753 doi: 10.1016/j. jcrysgro.2008.09.091

Kehoe AB et al. (2013) Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory. Physical Chemistry Chemical Physics 15:15477-15484 doi: 10.1039/c3cp52482e

Meiss J, Menke T, Leo K, Uhrich C, Gnehr WM, Sonntag S et al. (2011) Highly efficient semitransparent tandem organic solar cells with complementary absorber materials. Applied Physics Letters 99:043301 http:// dx.doi.org/10.1063/1.3610551

Mesa F, Dussan A, Gordillo G (2009) Evidence of trapping levels and photoelectric properties of Cu3BiS3 thin films. Physica B: Condensed Matter 404:5227-5230 http:// dx.doi.org/10.1016/j.physb.2009.08.302

Mesa F, Gordillo G (2009) Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two-step process. Journal of Physics Conference Series 167(1):012019 doi: 10.1088/1742- 6596/167/1/012019

Mesa F, Dussan A, Gordillo G (2010) Study of the growth process and optoelectrical properties of nanocrystalline Cu3BiS3 thin films. Phys. Status Solidi C 7:917-920 doi: 10.1002/pssc.200982860

Mesa F, Gordillo G, Dittrich T, Ellmer K, Baier R et al. (2010) Transient surface photovoltage of p-type Cu3BiS3. Appl. Phys. Lett. 96:082113 http://dx.doi. org/10.1063/1.3334728

Mesa F, Dussan A, Sandino J, Lichte H (2012) Characterization of Al/Cu3BiS3/buffer/ZnO solar cells structure by TEM. Journal of Nanoparticle Research 14:1054 doi: 10.1007/s11051-012-1054-7

Mönig H, Kaufmann CA, Fischer CH, Grimm A, Caballero R et al. (2011) Gallium gradients in chalcopyrite thin films: Depth profile analyses of films grown at different temperatures. Journal of Applied Physics 110:093509

Naiding W (1994) The Cu-Bi-S system: results from low temperature experiments. Mineralogical Magazine 58:201-204

Razmara MF, Henderson CM, Patrick R et al. (1997) The cristalchemestry of the solid solution series between chalcostibite (CuSbS2) and emplectite (CuBiS2). Mineralogical Magazine 61:79-88

Repins I, Contreras MA, Egaas B, DeHart C, Scharf J et al. (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics: Research and Applications 16:235-239 doi: 10.1002/pip.822

Seo JH, Kim DH, Kwon SH, Song M, Choi MS et al. (2012) High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells. Advanced Materials 24:4523-4527 doi: 10.1002/adma.201201419

Tadjarodi A, Cheshmekhavar AH, Imani M (2012) Preparation of AgInS2 microwave heating technique; study of effective parameters, optical and photovoltaic characteristics. Applied Surface Science 15:449-456 http:// dx.doi.org/10.1016/j.apsusc.2012.09.080

Yan J, YuJuan Z, Wenjun L, Yanan Y, Xiaoyun L et al. (2012) Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane. Journal of Materials Science 47:4159-4166 doi: 10.1007/ s10853-012-6270-0

Palavras-Chave #Electric transport; Cu3BiS3; transient surface photovoltage; defects.
Tipo

info:eu-repo/semantics/workingPaper

info:eu-repo/semantics/publishedVersion