990 resultados para SINGULAR CONTINUOUS-SPECTRUM
Resumo:
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.
Resumo:
Equilateral-triangle-resonator (ETR) microlasers with an output waveguide connected to one of the vertices of the ETR are suitable to be a light source for photonic integrated circuits. InP-GaInAsP ETR lasers with side length from 10 to 30 pm and the output-waveguide width of 1 or 2 pm are fabricated using standard photolithography and inductively coupled-plasma etching techniques. Continuous-wave electrically injected 1520-nm ETR laser with 20-mu m sides is realized with the maximum output power 0.17 and 0.067 mW and the threshold current 34 and 43 mA at 290 K and 295 K, respectively.
Resumo:
A high-power continuous wave (cw) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor absorber mirror (SAM). The maximum average output power was 8.1 W and the optic-to-optic conversion efficiency was about 41 %. At the maximum incident pump power, the pulse width was about 8.6 ps and the repetition rate was 130 MHz. Experimental results indicated that this absorber was suitable for high power mode-locked solid-state lasers. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A novel and simple method for measuring the chirp parameter, frequency, and intensity modulation indexes of directly modulated lasers is proposed in a small-signal modulation scheme. A graphical approach is presented. An analytical solution to the measurement of low chirp parameters is also given. The measured results agree well with those obtained using the conventional methods.
Resumo:
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LP03 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.
Resumo:
In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.
Resumo:
Based on biomimetic pattern recognition theory, we proposed a novel speaker-independent continuous speech keyword-spotting algorithm. Without endpoint detection and division, we can get the minimum distance curve between continuous speech samples and every keyword-training net through the dynamic searching to the feature-extracted continuous speech. Then we can count the number of the keywords by investigating the vale-value and the numbers of the vales in the curve. Experiments of small vocabulary continuous speech with various speaking rate have got good recognition results and proved the validity of the algorithm.
Resumo:
A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.
Resumo:
In speaker-independent speech recognition, the disadvantage of the most diffused technology (HMMs, or Hidden Markov models) is not only the need of many more training samples, but also long train time requirement. This paper describes the use of Biomimetic pattern recognition (BPR) in recognizing some mandarin continuous speech in a speaker-independent manner. A speech database was developed for the course of study. The vocabulary of the database consists of 15 Chinese dish's names, the length of each name is 4 Chinese words. Neural networks (NNs) based on Multi-weight neuron (MWN) model are used to train and recognize the speech sounds. The number of MWN was investigated to achieve the optimal performance of the NNs-based BPR. This system, which is based on BPR and can carry out real time recognition reaches a recognition rate of 98.14% for the first option and 99.81% for the first two options to the persons from different provinces of China speaking common Chinese speech. Experiments were also carried on to evaluate Continuous density hidden Markov models (CDHMM), Dynamic time warping (DTW) and BPR for speech recognition. The Experiment results show that BPR outperforms CDHMM and DTW especially in the cases of samples of a finite size.
Resumo:
We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.
Resumo:
A simple cw mode-locked solid-state laser, which is end-pumped by a low-power laser diode, was demonstrated by optimizing the laser-mode size inside the gain medium. The optimum ratio between mode and pump spot sizes inside the laser crystal was estimated for a cw mode-locked laser, taking into account the input pump power. Calculation and experiment have shown that the optimum ratio was about 3 when the pump power is 2 W, which is different from the value regularly used in passively mode-locked solid-state lasers. This conclusion is also helpful in increasing the efficiency of high-power ultrashort lasers. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The biaxial piezospectroscopic coefficient (i.e., the rate of spectral shift with stress) of the electrostimulated near-band-gap luminescence of gallium nitride (GaN) was determined as Pi=-25.8 +/- 0.2 meV/GPa. A controlled biaxial stress field was applied on a hexagonal GaN film, epitaxially grown on (0001) sapphire using a ball-on-ring biaxial bending jig, and the spectral shift of the electrostimulated near-band-gap was measured in situ in the scanning electron microscope. This calibration method can be useful to overcome the lack of a bulk crystal of relatively large size for more conventional uniaxial bending calibrations, which has so far hampered the precise determination of the piezospectroscopic coefficient of GaN. The main source of error involved with the present calibration method is represented by the selection of appropriate values for the elastic stiffness constants of both film and substrate. The ball-on-ring calibration method can be generally applied to directly determine the biaxial-stress dependence of selected cathodoluminescence bands of epilayer/substrate materials without requiring separation of the film from the substrate. (c) 2006 American Institute of Physics.
Resumo:
The valence band structures of Al-N-codoped [ZnO:(Al, N)] and N-doped (ZnO:N) ZnO films were studied by normal and soft x-ray photoelectron spectroscopy. The valence-band maximum of ZnO:(Al, N) shifts up to Fermi energy level by about 300 meV compared with that of ZnO:N. Such a shift can be attributed to the existence of a kind of Al-N in ZnO:(Al, N), as supported by core level XPS spectra and comparison of modified Auger parameters. Al-N increased the relative quantity of Zn-N in ZnO:(Al, N), while N-N decreased that of Zn-N in ZnO:N. (c) 2006 American Institute of Physics.
Resumo:
In this paper, we presents HyperSausage Neuron based on the High-Dimension Space(HDS), and proposes a new algorithm for speaker independent continuous digit speech recognition. At last, compared to HMM-based method, the recognition rate of HyperSausage Neuron method is higher than that of in HMM-based method.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.