841 resultados para Robotic benchmarks
Resumo:
Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform
Resumo:
Considering the transition from industrial society to information society, we realize that the digital training that is addressed is currently insufficient to navigate within a digitized reality. As proposed to minimize this problem, this paper assesses, validates and develops the software RoboEduc to work with educational robotics with the main differential programming of robotic devices in levels, considering the specifics of reality training . One of the emphases of this work isthe presentation of materials and procedures involving the development, analysis and evolution of this software. For validation of usability tests were performed, based on analysis of these tests was developed version 4.0 of RoboEduc
Resumo:
The present work shows the development and construction of a robot manipulator with two rotary joints and two degrees of freedom, driven by three-phase induction motors. The positions of the arm and base are made, for comparison, by a fuzzy controller and a PID controller implemented in LabVIEW® programming environment. The robot manipulator moves in an area equivalent to a quarter of a sphere. Experimental results have shown that the fuzzy controller has superior performance to PID controller when tracking single and multiple step trajectories, for the cases of load and no load
Resumo:
In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.
Resumo:
Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification
Resumo:
We propose a robotics simulation platform, named S-Educ, developed specifically for application in educational robotics, which can be used as an alternative or in association with robotics kits in classes involving the use of robotics. In the usually known approach, educational robotics uses robotics kits for classes which generally include interdisciplinary themes. The idea of this work is not to replace these kits, but to use the developed simulator as an alternative, where, for some reason, the traditional kits cannot be used, or even to use the platform in association with these kits. To develop the simulator, initially, we conducted research in the literature on the use of robotic simulators and robotic kits, facing the education sector, from which it was possible to define a set of features considered important for creating such a tool. Then, on the software development phase, the simulator S-Educ was implemented, taking into account the requirements and features defined in the design phase. Finally, to validate the platform, several tests were conducted with teachers, students and lay adults, in which it was used the simulator S-Educ, to evaluate its use in educational robotics classes. The results show that robotic simulator allows a reduction of financial costs, facilitate testing and reduce robot damage inherent to its use, in addition to other advantages. Furthermore, as a contribution to the community, the proposed tool can be used to increase adhesion of Brazilian schools to the methodologies of educational robotics or to robotics competitions
Resumo:
The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
Resumo:
The objective of the dissertation was the realization of kinematic modeling of a robotic wheelchair using virtual chains, allowing the wheelchair modeling as a set of robotic manipulator arms forming a cooperative parallel kinematic chain. This document presents the development of a robotic wheelchair to transport people with special needs who overcomes obstacles like a street curb and barriers to accessibility in streets and avenues, including the study of assistive technology, parallel architecture, kinematics modeling, construction and assembly of the prototype robot with the completion of a checklist of problems and barriers to accessibility in several pathways, based on rules, ordinances and existing laws. As a result, simulations were performed on the chair in various states of operation to accomplish the task of going up and down stair with different measures, making the proportional control based on kinematics. To verify the simulated results we developed a prototype robotic wheelchair. This project was developed to provide a better quality of life for people with disabilities
Resumo:
We propose in this work a software architecture for robotic boats intended to act in diverse aquatic environments, fully autonomously, performing telemetry to a base station and getting this mission to be accomplished. This proposal aims to apply within the project N-Boat Lab NatalNet DCA, which aims to empower a sailboat navigating autonomously. The constituent components of this architecture are the memory modules, strategy, communication, sensing, actuation, energy, security and surveillance, making these systems the boat and base station. To validate the simulator was developed in C language and implemented using the graphics API OpenGL resources, whose main results were obtained in the implementation of memory, performance and strategy modules, more specifically data sharing, control of sails and rudder and planning short routes based on an algorithm for navigation, respectively. The experimental results, shown in this study indicate the feasibility of the actual use of the software architecture developed and their application in the area of autonomous mobile robotics
Resumo:
Bayesian networks are powerful tools as they represent probability distributions as graphs. They work with uncertainties of real systems. Since last decade there is a special interest in learning network structures from data. However learning the best network structure is a NP-Hard problem, so many heuristics algorithms to generate network structures from data were created. Many of these algorithms use score metrics to generate the network model. This thesis compare three of most used score metrics. The K-2 algorithm and two pattern benchmarks, ASIA and ALARM, were used to carry out the comparison. Results show that score metrics with hyperparameters that strength the tendency to select simpler network structures are better than score metrics with weaker tendency to select simpler network structures for both metrics (Heckerman-Geiger and modified MDL). Heckerman-Geiger Bayesian score metric works better than MDL with large datasets and MDL works better than Heckerman-Geiger with small datasets. The modified MDL gives similar results to Heckerman-Geiger for large datasets and close results to MDL for small datasets with stronger tendency to select simpler network structures
Resumo:
Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as deadzone due to valve spool overlap on the passage´s orifice of the fluid. This work describes the development of a nonlinear controller based on the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated system with unknown dead-band. Numerical results are presented in order to demonstrate the control system performance
Resumo:
Ensure the integrity of the pipeline network is an extremely important factor in the oil and gas industry. The engineering of pipelines uses sophisticated robotic inspection tools in-line known as instrumented pigs. Several relevant factors difficult the inspection of pipelines, especially in offshore field which uses pipelines with multi-diameters, radii of curvature accentuated, wall thickness of the pipe above the conventional, multi-phase flow and so on. Within this context, appeared a new instrumented Pig, called Feeler PIG, for detection and sizing of thickness loss in pipelines with internal damage. This tool was developed to overcome several limitations that other conventional instrumented pigs have during the inspection. Several factors influence the measurement errors of the pig affecting the reliability of the results. This work shows different operating conditions and provides a test rig for feeler sensors of an inspection pig under different dynamic loads. The results of measurements of the damage type of shoulder and holes in a cyclic flat surface are evaluated, as well as a mathematical model for the sensor response and their errors from the actual behavior
Resumo:
Water vapor is an atmospheric component of major interest in atmospheric science because it affects the energy budget and plays a key role in several atmospheric processes. The Amazonian region is one of the most humid on the planet, and land use change is able to affect the hydrologic cycle in several areas and consequently to generate severe modifications in the global climate. Within this context, accessing the error associated with atmospheric humidity measurement and the validation of the integrated water vapor (IWV) quantification from different techniques is very important in this region. Using data collected during the Radiation, Cloud, and Climate Interactions in Amazonia during the Dry-to-Wet Transition Season (RACCI/DRY-TO-WET), an experiment carried out in southwestern Amazonia in 2002, this paper presents quality analysis of IWV measurements from RS80 radiosondes, a suite of GPS receivers, an Aerosol Robotic Network (AERONET) solar radiometer, and humidity sounding from the Humidity Sounder for Brazil (HSB) aboard the Aqua satellite. When compared to RS80 IWV values, the root-mean-square (RMS) from the AERONET and GPS results are of the order of 2.7 and 3.8 kg m(-2), respectively. The difference generated between IWV from the GPS receiver and RS80 during the daytime was larger than that of the nighttime period because of the combination of the influence of high ionospheric activity during the RACCI experiment and a daytime drier bias from the RS80.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a nestedness index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the sum of distances of the occupied elements in the adjacency matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the most simple case the distance of the matrix element ai,j is di,j = i+j, the Manhattan distance. A generic distance is obtained as di,j = (i¬ + j¬)1/¬. The nestedness índex is defined by = 1 − where is the temperature of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix that is defined as temperature one. We discuss an important feature of the problem: matrix occupancy. We address this question using a metric index ¬ that adjusts for matrix occupancy