Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço


Autoria(s): Lima, Naiyan Hari Cândido
Contribuinte(s)

Melo, Jorge Dantas de

CPF:04549366486

http://lattes.cnpq.br/8241420490601784

CPF:09463097449

http://lattes.cnpq.br/7325007451912598

Dória Neto, Adrião Duarte

CPF:10749896434

http://lattes.cnpq.br/1987295209521433

Martins, Allan de Medeiros

CPF:01979076448

http://lattes.cnpq.br/4402694969508077

Lima Júnior, Francisco Chagas de

CPF:75046105420

Data(s)

17/12/2014

18/04/2013

17/12/2014

13/08/2012

Resumo

Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification

A aprendizagem por reforço é uma técnica de aprendizado de máquina que, embora já tenha encontrado uma grande quantidade de aplicações, talvez ainda não tenha alcançado seu pleno potencial. Uma das possibilidades que não foi devidamente testada até hoje foi a utilização da aprendizagem por reforço em conjunto com outros métodos para a solução de problemas de classificação de padrões. É bem documentada na literatura a problemática que ensembles de máquinas de vetor de suporte encontram em termos de capacidade de generalização. Algoritmos como Adaboost não lidam apropriadamente com os desequilíbrios que podem surgir nessas situações. Várias alternativas já foram propostas, com margens variadas de sucesso. Esta dissertação apresenta uma nova abordagem para a construção de comitês de máquinas de vetor de suporte. O algoritmo apresentado combina o algoritmo Adaboost com uma camada de aprendizagem por reforço, para ajustar parâmetros do comitê evitando que desequilíbrios nos classificadores componentes do comitê prejudiquem o desempenho de generalização da hipótese final. Foram efetuadas comparações de comitês com e sem essa camada adicional de aprendizagem por reforço, testando conjuntos de dados benchmarks amplamente conhecidos na área de classificação de padrões

Formato

application/pdf

Identificador

LIMA, Naiyan Hari Cândido. Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço. 2012. 75 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.

http://repositorio.ufrn.br:8080/jspui/handle/123456789/15449

Idioma(s)

por

Publicador

Universidade Federal do Rio Grande do Norte

BR

UFRN

Programa de Pós-Graduação em Engenharia Elétrica

Automação e Sistemas; Engenharia de Computação; Telecomunicações

Direitos

Acesso Aberto

Palavras-Chave #Aprendizado de máquina. Sistemas inteligentes. Classificação de padrões. Máquinas de comitê. Máquinas de vetor de suporte. Aprendizagem por reforço #Machine learning. Intelligent systems. Pattern classification. Committee machines. Support vector machines. Reinforcement learning #CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Tipo

Dissertação