809 resultados para Récepteurs NMDA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that the expression of NMDA receptor NR1 subunit mRNA splice variants in Alzheimer's disease (AD) brain varies according to regional susceptibility to pathological damage. Here we investigated the expression of the modulatory NR2 subunits of the NMDA receptor using quantitative RT-PCR to assay all NR2 isoforms. Significantly lower expression of NR2A and NR2B transcripts was found in susceptible regions of AD brain, whereas expression of NR2C and NR2D transcripts did not differ from that in controls. Western blot analysis confirmed a lower expression of the NR2A and NR2B isoforms at the protein level. The results suggest that NR2 subunit composition may modulate NMDA receptor-mediated excitotoxicity. NMDA receptor dysfunction might give rise to the regionally selective pattern of neuronal loss that is characteristic of AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cone snails have evolved a vast array of peptide toxins for prey capture and defence. These peptides are directed against a wide variety of pharmacological targets, making them an invaluable source of ligands for studying the properties of these targets in normal and diseased states. A number of these peptides have shown efficacy in vivo, including inhibitors of calcium channels, the norepinephrine transporter, nicotinic acetylcholine receptors, NMDA receptors and neurotensin receptors, with several having undergone pre-clinical or clinical development for the treatment of pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATP and glutamate are fast excitatory neurotransmitters in the central nervous system acting primarily on ionotropic P2X and glutamate [N-methyl-D-aspartate (NMDA) and non-NMDA] receptors, respectively. Both neurotransmitters regulate synaptic plasticity and long-term potentiation in hippocampal neurons. NMDA receptors are responsible primarily for the modulatory action of glutamate, but the mechanism underlying the modulatory effect of ATP remains uncertain. In the present study, the effect of ATP on recombinant NR1a + 2A, NR1a + 2B, and NR1a + 2C NMDA receptors expressed in Xenopus laevis oocytes was investigated. ATP inhibited NR1a + 2A and NR1a + 2B receptor currents evoked by low concentrations of glutamate but potentiated currents evoked by saturating glutamate concentrations. In contrast, ATP potentiated NR1a + 2C receptor currents evoked by nonsaturating glutamate concentrations. ATP shifted the glutamate concentration-response curve to the right, indicating a competitive interaction at the agonist binding site. ATP inhibition and potentiation of glutamate-evoked currents was voltage-independent, indicating that ATP acts outside the membrane electric field. Other nucleotides, including ADP, GTP, CTP, and UTP, inhibited glutamate-evoked currents with different potencies, revealing that the inhibition is dependent on both the phosphate chain and nucleotide ring structure. At high concentrations, glutamate outcompetes ATP at the agonist binding site, revealing a potentiation of the current. This effect must be caused by ATP binding at a separate site, where it acts as a positive allosteric modulator of channel gating. A simple model of the NMDA receptor, with ATP acting both as a competitive antagonist at the glutamate binding site and as a positive allosteric modulator at a separate site, reproduced the main features of the data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the effects of Ala-7-conantokin-G (Con-G(A7)) and ifenprodil on the modulation by spermine of [H-3]MK801 binding to human cortical membranes. Human cortical tissue was obtained at autopsy and stored at -80 degreesC until assay. Both Con-GA7 and ifenprodil inhibited [H-3]MK801 binding, but spermine affected these inhibitions differently. Con-G(A7) IC50 changed little with spermine concentration, indicative of a non-competitive interaction, whereas the rightward shift in ifenprodil IC50 with increasing spermine concentration suggested partial competition. When the two agents were tested against the biphasic activation of [H-3]MK801 binding by spermine, they again differed in their effects. In the activation phase Con-G(A7) was a non-competitive inhibitor of spermine activation, and may even enhance the spermine EC50, while the ifenprodil data indicated a partially competitive interaction. Both agents were non-competitive in the inhibitory phase. Overall, the data suggest that Con-G(A7) and ifenprodil interact differently with the polyamine modulation of the glutamate-N-methyl-D-aspartate receptor. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Alcoholism is commonly associated with chronic smoking. A number of gene expression profiles of regions within the human mesocorticolimbic system have identified potential alcohol-sensitive genes; however, the influence of smoking on these changes was not taken into account. This study addressed the impact of alcohol and smoking on the expression of 4 genes, previously identified as alcoholism-sensitive. in the human prefrontal cortex (PFC). Methods: mRNA expression of apolipoprotein D, tissue inhibitor of the metalloproteinase 3, high-affinity glial glutamate transporter and midkine, was measured in the PFC of alcoholic Subjects and controls with and without smoking comorbidity using real-time polymerase chain reaction. Results: The results show that alcohol affects transcription of some of these genes. Additionally, smoking has a marked influence on gene expression. Conclusion: This study emphasizes the need for careful case selection in future gene expression studies to delineate the adaptive molecular process associated with smoking and alcohol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mesocorticolimbic system is the reward centre of the brain and the major target for drugs of abuse including alcohol. Neuroadaptive changes in this region are thought to underlie the process of tolerance and dependence. Recently, several research groups have searched for alcohol-responsive genes using high-throughput microarrays and well-characterized human post-mortem material. Comparison of data from these studies of cortical regions highlights the differences in experimental approach and selection of cases. However, alcohol-responsive gene sets associated with transcription, oxidative stress and energy production were common to these studies. In marked contrast, alcohol-responsive genes in the nucleus accumbens and the ventral tegmental area are primarily associated with changes in neurotransmission and signal transduction. These data support the concept that, within cortical regions, changes in gene expression are associated with alcoholism-related pathology. In the dopaminergic tract of the mesocorticolimbic system, alcohol-responsive gene sets suggest long-term neuroplastic changes in synaptic transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We have previously shown that the offspring of vitamin D3 depleted rats have enlarged ventricles and altered neurotrophin profiles (reduced NGF and GDNF). These findings enhance the biological plausibility that low prenatal vitamin D may be a risk factor for schizophrenia. Our recent behavioural studies have found that adult rats with developmental vitamin D deficiency (DVD) have a subtle increase in baseline locomotor activity and a heightened response to dopamine (DA) antagonists. The aim of this study was to investigate brain DA neurochemistry in the DVD model. Methods: We examined cerebrums and striatal tissue from neonates and a variety of brain tissues from the remaining littermates at adulthood. DA, DOPAC, HVA, serotonin and 5HIAA were analysed by HPLC. Single point comparisons for DA1, DA2 and NMDA receptors were also assessed in these tissues. Results: Significant increases in DA and HVA were found in brains from DVD deplete neonates (P=0.01). However, DA and its metabolites were not increased in either the neonate or adult striatum, however there was a trend towards increased DA and its metabolites in the accumbens (P=0.1). Receptor densities were unaffected by prenatal vitamin D levels. Conclusions: Although the effect of maternal diet appears to increase DA production and turnover in neonatal brain, this does not persist into adulthood. Thus other factors must underlie the increased locomotor activity noted in these animals. Future experiments will concentrate on monitoring accumbens and striatal DA release and turnover using microdialysis in pharmacologically challenged behavioural paradigms. References: Eyles D, Brown J; Mackay-Sim A, McGrath J, Feron F. (2003) Vitamin D3 and brain development. Neuroscience 118 (3) 641–653. Burne T, McGrath J, Eyles D, Mackay-Sim A. Behavioural characterization of vitamin D receptor knockout mice. (2005) Behavioural Brain Res: 157 299–308.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex (SFC). Propensity to alcoholism is associated with several genes. γ-Aminobutyric acid (GABA)A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the regional presentation of GABAA and glutamate-NMDA (N-methyl-d-aspartate) receptors in SFC. Autopsy tissue was obtained from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and matched controls. ADH1C, DRD2B, EAAT2, and APOE genotypes modulated GABAA-β subunit protein expression in SFC toward a less-effective form of the receptor. Most genotypes did not divide alcoholics and controls on glutamate-NMDA receptor pharmacology, although gender and cirrhosis did. Genotype may affect amino acid transmission locally to influence neuronal vulnerability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic alcohol misuse leads to both widespread and localized damage in human cerebral cortex. The latter, as neuronal loss, is marked in superior frontal cortex (SFC) but milder in primary motor cortex (PMC) and elsewhere. Quantitative morphometry by Harper et al showed that neuronal loss is greater in alcoholics with comorbidity (Wernicke Korsakoff syndrome, liver cirrhosis). Previous work revealed a paradox: the marked differences in GABAA receptor density, pharmacology, and expression between alcoholics without cormorbidity and controls are muted or absent in cirrhotic alcoholics. This concurs with work by the Butterworth group on hepatic encephalopathy cases — most of whom had an alcoholic ætiology — who show only minor differences from controls. Glutamate receptor differences are muted in many autopsy studies, though we have evidence that NMDA site pharmacology may vary in cirrhotic alcoholics. Here we used Real-Time PCR normalized to GAPDH deltaCT to quantify NMDA NR1, NR2A and NR2B subunit expression in SFC and PMC samples obtained at autopsy from alcoholics with and without comorbid cirrhosis and matched controls. Overall subunit transcript expression was signifi cantly lower in alcoholic cirrhotics than in either of the other groups (F2,42 = 12.942, P < 0.001). The effect was most marked for the NR1 subunit; males differed from females, particularly in SFC. The data suggest that if excitotoxicity mediates neuronal loss in SFC, it may be implemented differently: passively in uncomplicated alcoholics, by altered GABAergic transmission; actively in cirrhotic alcoholics, by altered glutamatergic transmission. We also subdivided cases on a panel of genetic markers. Different genotypes interacted with NMDA and GABAA pharmacology and expression. Cirrhotic and uncomplicated alcoholics may differ pathogenically because of inherent characteristics in addition to possible neurotoxic sequelæ to the liver damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term alcohol abuse by human subjects leads to selective brain damage that is restricted in extent and variable in severity. Within the cerebral cortex, neuronal loss is most marked in the superior frontal cortex and relatively mild in motor cortex. Cirrhotic alcoholics and subjects with alcohol-related Wernicke-Korsakoff syndrome show more severe and more extensive damage than do uncomplicated cases. Accumulating evidence suggests that the likelihood of developing alcohol dependency is associated with one or more genetic markers. In previous work we showed that GABAA receptor functionality, and the subunit isoform expression that underlies this, differed in region- and disease-specific ways between alcoholics and controls. By contrast, glutamate receptor (NMDA, KA, AMPA) differences were muted or absent. Here we asked if genotype differentiated the form, pharmacology, or expression of glutamate and GABA receptors in pathologically vulnerable and spared cortical regions, with a view to determining whether such subject factors might influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy under informed, written consent from uncomplicated and alcoholic-cirrhotic Caucasian (predominantly Anglo-Celtic) cases, together with matched controls and cases with cirrhosis of non-alcoholic origin. All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were processed for synaptic membrane receptor binding, mRNA analysis by quantitative RT-PCR, and protein analysis by Western blot. Genotyping was performed by PCR methods, in the main using published primers. Several genetic markers differentiated between our alcoholic and control subjects, including the GABAA receptor 2 subunit (GABB2) gene ( 2 (3) 10.329, P 0.01), the dopamine D2 receptor B1 (DRD2B) allele ( 2 (3) 10.109, P 0.01) and a subset of the alcohol dehydrogenase-3 (ADH3) alleles ( 2 (2) 4.730, P 0.05). Although neither the type-2 glutamate transporter (EAAT2) nor the serotonin transporter (5HTT) genes were significantly associated with alcoholism, only EAAT2 heterozygotes showed a significant association between ADH3 genotype and alcoholism ( 2 (3) 7.475, P 0.05). Other interactions between genotypes were also observed. DRD2A, DRD2B, GABB2, EAAT2 and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters, although in combined subjects there was a significant DRD2B X Area Interaction with glutamateNMDA receptor efficacy (F(1,57) 4.67; P 0.05), measured as the extent of glutamate-enhanced MK801 binding. In contrast, there was a significant Case-group X ADH3 X Area Interaction with glutamateNMDA receptor efficacy (F(3,57) 2.97; P 0.05). When GABAA receptor subunit isoform expression was examined, significant Case-group X Genotype X Area X Isoform interactions were found for EAAT2 with subunit mRNA (F(1,37) 4.22; P0.05), for GABB2 with isoform protein (F(1,37) 5.69; P 0.05), and for DRD2B with isoform protein (F(2,34)5.69; P0.05). The results suggest that subjects’ genetic makeup may modulate the effectiveness of amino acid-mediated transmission in different cortical regions, and thereby influence neuronal vulnerability to excitotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe long-term alcohol misuse leads to localized brain damage that is prominent in superior frontal cortex but less so in other cortical areas e.g. primary motor. Alcohol dependence is also associated with several genetic markers. GABAA receptor expression differs selectively between alcoholics and controls in a manner that conforms to the pathology, whereas glutamate receptors are much less regionally variable in these subjects. We determined whether genotype differentiated the pharmacology of glutamate-NMDA receptors and the expression GABAA receptor subunits transcripts in a locally appropriate way so as to influence the severity of alcohol-induced brain damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA-A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate N-methyl-D-aspartate (NMDA) and GABA-A receptors to influence the severity of alcohol-induced brain damage. Cerebral cortex tissue was obtained at autopsy from alcoholics without disease comorbid with alcoholics, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABRB2, SLC1A2, and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters. In contrast, a specific alcohol dehydrogenase (ADHIC) genotype interacted significantly with NMDA efficacy and affinity in a region-specific manner SLC1A2 (glutamate transporter-2) genotype interacted significantly with local GABAA receptor b subunit mRNA expression, and ADHIC, DRD2B, SLC1A2, and APOE genotypes with b subunit isoform protein expression. In the latter instance, possession of the alcoholism- associated allele altered b isoform protein expression patterns toward a less-efficacious form of the GABA-A receptor in the pathologically vulnerable region. GABRB2 and GRIN2B (NMDA receptor 2B subunit} Genotypes were associated with significant regional difference in the pattern of b subunit protein isoform expression, but this was not influenced by alcoholism status. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin can modulate the activity of neural reward pathways that are strongly implicated in mediating the effects of chronic alcohol misuse, and its treatment, in human subjects. In previous work and as discussed elsewhere at this meeting, we and others have found consistent differences in the parameters of GABA and glutamate receptors, and the expression of their component subunit transcripts and proteins, in areas of the alcoholic brain that are altered by alcoholism. We did not fi nd clear changes in GABA and glutamate transport function in such samples, but a series of microarray analyses showed consistent upregulation of the presynaptic GABA/betaine transporter SLC6A12. Microarray studies showed no signifi cant differences in the expression of transcripts associated with 5HT transmission; however, only a small number of such elements were present on the arrays. Here we partitioned GABAA and NMDA pharmacology, and subunit mRNA and protein expression, measured in samples of frontal and motor cortex obtained at autopsy from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and controls, according to 5HTTLPR (SLC6A4) and 5HT1B (HTR1B) polymorphisms. We found no effect of these genotypes on the expression of GABAA receptor gene products, but there was a signifi cant mRNA Transcript X Area X Group X 5HTTLPR Interaction with NMDA subunit isoform expression measured by Real Time PCR with GAPDH normalization. Further analysis showed the effect to be selective for alcoholics with cirrhosis, to be most marked in the pathologically vulnerable frontal cortex, and to vary with subunit transcript (F2,76 = 6.545, P = 0.002). NR1 expression was most affected, followed by NR2A, with NR2B expression least altered. Pilot data suggest 5HT1B genotype may also modulate NMDA subunit expression. Interactions between amino acid and serotonin transmission may infl uence susceptibility to alcohol dependence or pathogenesis