973 resultados para Mean intensity
Resumo:
The propagation of unsteady disturbances in a slowlyvarying cylindrical duct carrying mean swirling flow is investigated using a multiple-scales technique. This is applicable to turbomachinery flow behind a rotor stage when the swirl and axial velocities are of the same order. The presence of mean vorticity couples acoustic and vorticity equations which produces an eigenvalue problem that is not self-adjoint unlike that for irrotational mean flow. In order to determine the amplitude variation along the duct, an adjoint solution for the coupled system of equations is derived. The solution breaks down where a mode changes from cut on to cut off. In this region the amplitude is governed by a form of Airy's equation, and the effect of swirl is to introduce a small shift in the origin of the Airy function away from the turning-point location. The variation of axial wavenumber and amplitude along the duct is calculated. In hard-walled ducts mean swirl is shown to produce much larger amplitude variation along the duct compared with a nonswirling flow. Mean swirl also has a large effect in ducts with finite-impedance walls which differs depending on whether modes are co-rotating with the swirl or counter rotating. © 2001 by A.J. Cooper, Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The seasonal population dynamics and maturation cycle of the nematode Camallanus cotti in the posterior intestine of Chinese hooksnout carp Opsariichthys bidens have been studied in the Danjiangkou Reservoir of the Hubei Province in central China from September 2004 to November, 2005. The overall prevalence, mean abundance and intensity of C cotti among fish sampled (n = 700 fish) were 47%, 2.29 +/- 12.38 ( +/- S.D.) and 1-307 (average 4.89 +/- 17.74), respectively. The overall sexual ratio of female to male nematodes (excluding L3 and L4 juveniles) was 1.17:1. Statistical results showed weakly positive correlations betweerl fish length and the number of nematodes per host. The dynamics of infection of the nematode exhibited significant seasonal pattern in changes in mean abundance. A similar pattern was found for changes in nematode prevalence, although this was not statistically significant. Higher levels of infection were observed among fish sampled in summer months and the lower in the winter. Neither the prevalence nor the abundance of the parasite was significantly different between male and female hosts. The pattern of frequency distribution of the parasite in the host was found to be over-dispersed throughout the sampling period. In addition, studies on the development and maturation of the parasite in O. bidens revealed that development (maturation), recruitment of the next generation, and reproduction may be continuous year-round, although reproduction may peak during the winter. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Two thousand four hundred fifty-eight fish comprised of 53 species were captured in the Danjiangkou Reservoir, in the northwestern part of Hubei Province, central China during 2004, to examine Camallanus cotti infections. We found that 19 cypriniform, 3 siluriforme, and 4 perciforme fishes were infected by the nematode. Our study revealed the species, Hemiculter bleekeri bleekeri, Culter oxycephaloide, Pseudolaubuca sinensis, Acanthobrama simony, Mylopharyngodon piceus, Ctenopharyngodon idella, Gnathopogon imberbis, G. argentatus, Saurogobio dabryi, S. dumerili, Gobiobotia ichangensis, Liobagrus marginatoides, and Ctenogobius shennongensis as new hosts of the worm. The number and range of fish host species found in this survey were much greater than any of the previous investigations. The mean prevalence, prevalence, mean abundance, and intensity of infection varied in different fish species, indicating a possible host preference. Moreover, we suggest that this nematode is a native parasite of cypriniform fishes in China, perhaps initially in the reaches of the Yangtze River.
Resumo:
Crustacean zooplankton size structure in 27 aquaculture lakes was studied to test the hypothesis that larger size structure is associated with higher grazing pressure. Mean body length of crustaceans was positively correlated with increasing Chl a (r(2) = 0.40, P = 0.000) and TP (r(2) = 0.38, P = 0.000), contrary to the empirical studies. However, the ratio of zooplankton to phytoplankton biomass decreased significantly with increasing TP (r(2) = 0.27, P = 0.005) and mean body length (r(2) = 0.46, P = 0.000). Meanwhile, size structure showed no significant effect in explaining residual variations of phosphorus-chlorophyll relationship (P = 0.231). These results indicate that larger size structure was not always associated with higher zooplankton grazing pressure. It is likely that in aquaculture lakes crustacean zooplankton size structure was of minor importance in control of phytoplankton biomass, and it was mainly regulated by fish predation. The results showed in our study and the empirical studies might be a reflection of two different stages of lake eutrophication and fish predation intensity.
Resumo:
The effects of cadmium (Cd2+) on growth status, chlorophyll (Chl) content, photochemical efficiency, and photosynthetic intensity were studied on Canna indica Linn. Plant specimens that were produced from a constructed wetland and precultivated hydroponically in 20 L of 1/10 Hoagland solution under greenhouse conditions for I week were exposed to cadmium in concentrations of 0, 0.4, 0.8, 1.6 and 3.2 mg L- Cd2+, respectively. The results show that leaves were injured in the Cd2+ solution by the third day of exposure and the injury became more serious with an increase in the applied heavy metal. Under 3.2 mg L-1 Cd2+ treatment, growth retardation, the decrease of chlorophyll content from 0.70 to 0.43 mg g(-1) FW, and a decrease in Chl a/b ratio from 2.0 to 1.2 were observed. Chl a was more sensitive than Chl b to Cd2+ stress. The decrease was the same with photochemical efficiency. Photosynthetic intensity decreased by 13.3% from 1.5X10(4) mumol m(-2)s(-1) CO2 in control to 1.3x10(4) mumol m(2)s(-1) CO2 in the treatment of 3.2 mg L-1. Because Canna species are used in heavy metal phytoremediation, these results show that C. indica can tolerate 0.4 to 0.8 mg L-1 Cd2+. Therefore, it is a potential species for phytoremediation of cadmium with some limitations only at higher concentrations.
Resumo:
The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs
Resumo:
Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.
Resumo:
InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.
Resumo:
Erbium was implanted with energies 200 or 400 keV into epitaxial (0 0 0 1) GaN grown on (0 0 0 1) Al2O3 substrate at room temperature (RT) and 400degreesC. Both random (10degrees tilt from c-axis) and channeled (along c-axis) implantations were studied. RBS/Channeling technique was used to study the dependences of the radiation damage with ion implantation energy, direction and temperature. It was found that the channeling implantation or elevating temperature implantation both resulted in the decrease of the damage. Moreover, the Photoluminscence (PL) properties of Er-implanted GaN thin filius were also studied. The experimental results indicate that the PL intensity can be enhanced by raising implantation energy or implanting along channeling direction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Based on a modified mean-field model, we calculate the Curie temperatures of Fe2+- and Co2+-doped diluted magnetic semiconductors (DMSs) and their dependence on the hole concentration. We find that the Curie temperatures increase with an increase in hole concentration and the relationship T(C)proportional to p(1/3) also approximately holds for Fe2+- and Co2+-doped systems with moderate hole concentration. For either low or high hole concentrations, however, the p(1/3) law is violated due to the anomalous magnetization of the Fe2+ and Co2+ ions, and the nonparabolic nature of the hole bands. Further, the values of T-C for Fe2+- and Co2+-doped DMSs are significantly higher than those for Mn2+-doped DMSs, due to the larger exchange interaction strength.
Resumo:
The influence of dislocations on photoluminescence (PL) of InGaN/GaN multiple quantum wells (MQWs) is investigated by triple-axis x-ray diffraction (TAXRD), transmission electron microscopy (TEM), and PL spectra. The omega scan of every satellite peak by TAXRD is adopted to evaluate the mean screw and edge dislocation densities in MQWs. The results show that dislocations can lead to a reduction of the PL-integrated intensity of InGaN/GaN MQWs under certain conditions, with edge dislocations playing a decisive role. Additionally, the dislocations can broaden the PL peak, but the effect becomes evident only under the condition when the interface roughness is relatively low. (C) 2005 American Institute of Physics.
Resumo:
Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.
Resumo:
Based on silicon-on-insulator (SOI) technology, a Mach-Zehnder interferometer (MZI) is fabricated, in which two directional couplers serve as power splitter and combiner. The free carrier plasma dispersion effect of Si is adopted to achieve the phase modulation and the consequent intensity modulation of optical fields. The device presents an insertion loss of 2.61 dB and an extinction ratio of 19.6 dB. The rise time and fall time are 676 ns and 552 ns, respectively. Detailed analysis and explanation of the performance behaviors are also presented. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We report on stacking fault (SF) detection in free-standing cubic-SiC epilayer by the Raman measurements. The epilayer with enhanced SFs is heteroepitaxially grown by low pressure chemical vapour deposition on a Si(100) substrate and is released in KOH solution by micromechanical manufacture, on which the Raman measurements are performed in a back scattering geometry. The TO line of the Raman spectra is considerably broadened and distorted. We discuss the influence of SFs on the intensity profiles of TO mode by comparing our experimental data with the simulated results based on the Raman bond polarizability (BP) model in the framework of linear-chain concept. Good agreement with respect to the linewidth and disorder-induced peak shift is found by assuming the mean distance of the SFs to be 11 angstrom in the BP model.
Resumo:
We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering process may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.