978 resultados para Electrostatic force microscopy
Resumo:
High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.
Resumo:
Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Self-assembly Ge quantum dots (QD) on Si and Si/Ge mutli-quantum-wells (MQW) are grown by MBE. The island size and island density was investigated by atomics force microscopy. Ten-layer and twenty-layer MQW were selected for photodiode device fabrication. In photoluminescence (PL), a broad peak around 1.55-mu m wavelength was observed with higher peak intensity for the 10-layer MQW which had less defects than the 20-layer sample. Resonant cavity enhanced (RCE) photodiodes were fabricated by bonding on a SOI wafer. Selected responsivity at 1.55 mu m was successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Homoepitaxial growth of 4H-SiC on off-oriented n-type Si-face (0001) substrates was performed in a home-made hot-wall low pressure chemical vapor deposition (LPCVD) reactor with SiH4 and C2H4 at temperature of 1500 C and pressure of 20 Torr. The surface morphology and intentional in-situ NH3 doping in 4H-SiC epilayers were investigated by using atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS). Thermal oxidization of 4H-SiC homoepitaxial layers was conducted in a dry O-2 and H-2 atmosphere at temperature of 1150 C. The oxide was investigated by employing x-ray photoelectron spectroscopy (XPS). 4H-SiC MOS structures were obtained and their C-V characteristics were presented.
Resumo:
Quality ZnO films were successfully grown on Si(100) substrate by low-pressure metal organic chemical vapor deposition method in temperature range of 300-500 degrees C using DEZn and N2O as precursor and oxygen source respectively. The crystal structure, optical properties and surface morphology of ZnO films were characterized by X-ray diffraction, optical refection and atomic force microscopy technologies. It was demonstrated that the crystalline structure and surface morphology of ZnO films strongly depend on the growth temperature.
Resumo:
We have investigated the hydride vapor-phase epitaxy growth of (10 (1) over bar(3) over bar)-oriented GaN thick films on patterned sapphire substrates (PSSs) (10 (1) over bar0). From characterization by atomic force microscopy, scanning electron microscopy, double-crystal X-ray diffraction, and photoluminescence (PL), it is determined that the crystalline and optical qualities of (10 (1) over bar(3) over bar) GaN epilayers grown on the cylindrical PSS are better than those on the flat sapphire. However, two main crystalline orientations (10 (1) over bar(3) over bar) and (11 (2) over bar2) dominate the GaN epilayers grown on the pyramidal PSS, demonstrating poor quality. After etching in the mixed acids, these (10 (1) over bar(3) over bar) GaN films are dotted with oblique pyramids, concurrently lining along the < 30 (3) over bar2 > direction, indicative of a typical N-polarity characteristic. Defect-related optical transitions of the (10 (1) over bar(3) over bar) GaN epilayers are identified and detailedly discussed in virtue of the temperature-dependent PL. In particular, an anomalous blueshift-redshift transition appears with an increase in temperature for the broad blue luminescence due to the thermal activation of the shallow level.
Resumo:
Diluted-magnetic GaN:Sm:Eu films have been fabricated by co-implantation of Sm and Eu ions into c-plane (0001) GaN films and a subsequent annealing process. The structural, morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The XRD and AFM analyses show that the annealing process can effectively recover the crystalline degradation caused by implantation. Compared with GaN:Sm films, more defects have been introduced into GaN:Sm:Eu films due to the Eu implantation process. According to the SQUID analysis, GaN:Sm:Eu films exhibit clear room-temperature ferromagnetism. Moreover, GaN:Sm:Eu films show a lower saturation magnetization (Ms) than GaN:Sm films.
Resumo:
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 degrees C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 degrees C. The ZnTe epilayer grown at 360 degrees C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
Resumo:
ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (R-VI/II) in a wide range of 0.96-11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the R-VI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a R-VI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the R-VI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a R-VI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable R-VI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.
Resumo:
Bulk samples of tellurite glass with composition 75TeO(2)-20ZnO-5Na(2)O (TZN) were fabricated by melting and quenching techniques. In order to improve the surface quality of optical fiber preform made with this tellurite glass, the authors developed a multistage etching process. The relationship between successive etching treatments and roughness of the TZN glass surface was probed by using an atomic force microscope. The results demonstrate that this multistage etching method effectively improves this tellurite glass surface smoothness to a level comparable with that of a reference silica glass slide, and the corresponding chemical micromechanisms and fundamentals are discussed and confirmed by atomic force microscopy, potentially contributing to the development of multicomponent soft glass fibers and devices. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3437017]
Resumo:
在Au(111)硫醇自组装膜上通过原子力显微镜(AFM)纳米刻蚀加工了各种功能化纳米结构。本论文取得的主要成果如下: 1. “蘸笔”技术移除自组装膜及金基底 以烯丙基溴为墨水,用蘸笔技术在16-巯基十六羧酸(MHA)修饰的Au(111)基底上可以实现对金基底的直接加工,形成阴刻图案;并提出了详细的加工机理。 2. Au(111)自组膜表面的可逆加工 (1)利用乙醇修饰的导电AFM针尖通过电致刻蚀在Au(111)基底的烷基硫醇自组装膜上实现了阴阳刻图案的可逆加工。X射线光电子能谱分析表明阳刻图案的化学组成为氧化金,且此氧化金可被乙醇还原生成金得到阴刻图案。此阴刻图案可用作纳米模板,我们利用此模板加工了氧化铁磁性纳米结构和溶菌酶蛋白质纳米结构。 (2)用修饰硫醇的导电AFM针尖在Au(111)基底上实现了硫醇的可逆书写。 3. Au(111)自组膜表面官能团转化 用硫醇自组装膜修饰的Pt针在Au(111)基底的烷基硫醇自组装膜上实现了表面端基官能团转化。所得亲水性纳米图案可用作物理(如直接吸附纳米粒子)和化学纳米模板(如诱导硅烷自组装)。加工过程中基底自组装膜保持完整,未破坏Au-S键。 4. AFM研究适配子与血小板衍生生长因子-BB的相互作用 利用AFM电致刻蚀在HS-(CH2)12-(OCH2CH2)4-OH(EG4)/Au(111)上选择性移除EG4,在新暴露的金基底上生长血小板衍生生长因子-BB(PDGF-BB)适配子与EG4的混合自组装膜,通过PDGF-BB适配子与 PDGF-BB的特异性键合固定PDGF-BB,得到PDGF-BB的纳米图案。
Resumo:
载流子传输一直是有机半导体研究中最核心的问题,通过弱外延生长方法可制备高取向、大面积连续的平面酞菁化合物薄膜,其迁移率可达到单晶水平。本论文中应用建立起来的有机半导体开尔文探针力显微镜(KPFM)表征方法,从微观水平研究了这种弱取向外延薄膜和常规的多晶有机半导体薄膜中结构和电特性的关系。 1. 建立了有机半导体的KPFM表征方法。KPFM用微探针方法同时获得样品的表面形貌和电势,本文第二章中论述了KPFM的工作原理、操作方法和成像机制,解释了相关的有机半导体表面态的问题。并且定量验证我们所建立的这种方法的可靠性。 2. 运用KPFM研究了多晶态的有机半导体CuPc和F16CuPc,直接观察到晶界势垒的存在,说明CuPc晶界处存在类施主的缺陷能级,F16CuPc晶界处存在类受主的缺陷能级,这两两种缺陷态分别俘获空穴和电子,使晶界周围的载流子耗尽而形成空间电荷区,限制了载流子的传输,我们从实验的角度证明了有机半导体中晶界限制载流子传输的理论。另外得到多晶CuPc高能量分辨的局域功函图像,越是π电子暴露的表面其功函越高。 3. 在导电的H-Si(111)衬底上制备出6P诱导弱取向生长的CuPc和F16CuPc薄膜,比较了和SiO2衬底上的弱外延生长薄膜的特征。KPFM观察到在CuPc界面处的能带弯曲和空穴累积,这大大降低了载流子传输沟道内CuPc晶界的势垒,从而其迁移率得到很大提高,这说明6P除了具有在结构上诱导使酞菁取向的作用外,还具有电子结构上的效应。另外研究了6P弱外延生长的亚单层F16CuPc薄膜,直接观察到在6P-F16CuPc界面存在强烈的电荷累积,这从微观上说明了有机异质结的电特性。
Resumo:
本论文主要借助原子力显微镜(AFM)、X-射线光电子能谱(XPS)等实验手段,纳米尺度上在线原位地研究了高温临界组成PMMMA/SAN(50/50,w/w)共混薄膜体系,分析并探讨了此共混薄膜表面相分离及其超薄膜体系的润湿/去润湿和相分离行为。首先,从敲击式AFM中相位图的成像原理出发,建立了一个高温下用原位AFM定性鉴别不同聚合物的纳米尺寸微区的方法,即:先在基底(硅)上铺展一层非常平坦的单一组分(SAN)薄膜,再在此千膜上,通过旋涂由选择性溶剂(冰醋酸)配制的另一组分(PMMA)的极稀溶液,使之不能形成一层连续的完整膜,最后在高温(175℃)下用敲击模式的原子力显微镜(TM-AFM)检测相位图随退火时间的变化。得到在175℃的相位图中,PMMA富相比SAN的富相显得更暗,这为后续工作提供了定性鉴别相区的方法。其次,高温下用原位AFM研究了PMMA/SAN薄膜表面相分离过程,在线观察了相分离的归并过程,定量地得到了临界相分离温度,并给出了特征波矢对时间依赖关系的标度指数,划分了相分离动力学演变的不同阶段。对于膜厚约为130nm的体系,表面相分离的临界温度大约为165℃,其表面相分离的特征波矢与时间的标度关系q+(t)-t-n,在整个实验时间内,随时间的演变过程中,显示了两个不同的指数变化区,即前期很慢的n=0.13和后期的n=1/3。0.13的指数关系可能是由于表面聚合物链的几何受限及表面富集相把部分新生成的另一相覆盖所致,1/3的指数关系可以认为是由普遍的Brownian扩散所致。而对于膜厚为50曲的此组成共混薄膜,得到的标度关系与C汕n线性理论吻合得非常好的Spinodal Deposition(SD)表面相分离的初期,即n=0,这是由于降低膜厚 增加了共混物的相容性,提高了临界温度,从而减缓了相分离过程,使得在我 们观测的时间范围内更易观察到表面相分离的初期。再次,用阶梯式降温的好M和XPS,发现了PMMA/SAN体系原位和离位实验结果存在巨大差别的主要原因之一—润湿温度的存在。对PMMA/SAN(50/50,w/w,-130nm)共混薄膜体系,原位AFM的退火和准淬火实验表明, 虽然在高温和室温、真空和常态、原位和离位,相分离的聚合物共混薄膜表面 形貌变化不大,但是表面物理性质却有很大的区别。原位XPS实验表明,未经 任何处理的样品在185℃退火时,很快在离表面很薄的下面形成一层PMMA含 量远低于本体值的薄层,之后最表面的PMMA也往本体迁移,直至表面SAN 的含量远高于它的本体值。对已在175℃退火20hr的此样品,逐渐降温退火过 程的原位XPS表明,当退火温度降至145oC时,样品表面几乎完全被PMMA覆盖,很好地验证了Conlposto等提出的润湿温度的假设,即对此体系,润湿温 度是原位和离位存在巨大的差异的主要因素之一,这与原位AFM的实验结果也,存在很好的一致性。最后,高温下原位观察了硅基底上PMMA/SAN超薄膜(膜厚-Rg)的去润湿、相分离过程和PMMA在基底上的润湿过程,以及云母基底上的该体系高温下的稳定润湿行为。以硅为基底的PMM刀sAN共混超薄膜在155”c下发生了类 似sPinodal dewetting的去润湿,其原因可能是在垂直于基底的浓度梯度引起的表面组成的涨落,对这种去润湿的动力学还进行了探讨。以硅为基底的PMMA/SAN共混超薄膜在175℃下不仅发生了类似spinodal dewetting的去润 湿,而且还发生了去润湿液滴内部的相分离以及相分离析出的PMMA润湿硅基底的过程,提出了一个简单的模型描述了这种复杂的过程。此外,还研究了不同基底对此共混超薄膜体系的润湿行为进行了研究,以云母为基底的此共混体系在175℃下长时间内是稳定的,其原因可能是云母与PMMA和SAN均有很强的作用力,足于补偿聚合物链在构象嫡上的损失。