903 resultados para enriquecimento de funções
Resumo:
En este artículo, presento las ideas del profesor Ubiratan D’Ambrosio sobre la Etnomatemática, sus objetivos, su metodología, la relación entre Etnomatemática y Educación Matemática, la enseñanza de las matemáticas en aulas multiculturales, y sus comentarios sobre una caracterización de los trabajos de investigación en Etnomatemática realizados en Colombia. Caracterización publicada en: Blanco, H. La Etnomatemática en Colombia. Un programa en construcción. BOLEMA, año 19, No. 26. 2006. Esta entrevista fue realizada el sábado, 20 de marzo de 2004 en el VI Congreso de Historia de las Ciencias y la Tecnología. Buenos Aires, Argentina.
Resumo:
En este artículo, se presentan las ideas del profesor Alan Bishop sobre la Etnomatemática, sus objetivos, su metodología, la relación entre Etnomatemática y Educación Matemática y la enseñanza de las matemáticas en aulas multiculturales. Esta entrevista fue realizada el miércoles, 29 de noviembre de 2006 en el Seminario de formación avanzada: tres fases básicas en un estudio de investigación doctoral en educación. Universidad Distrital Francisco José de Caldas. Bogotá, Colombia.
Resumo:
Este proyecto indagó sobre las relaciones de género entre las y los profesores y las y los estudiantes en el aula de matemáticas, y cómo éstas influyen en el desempeño académico de ellos y ellas. Esta investigación se realizó en dos instituciones mixtas de la ciudad de San Juan de Pasto, y la información fue recolectada por medio de entrevistas y observaciones dentro del aula de clase, las cuales se analizaron desde un punto de vista cualitativo y cuantitativo. Finalmente, se espera que esta investigación contribuya a crear conciencia sobre esta problemática y a mejorar las relaciones en el salón de clase de matemáticas entre docentes y estudiantes, tomando en cuenta las diferencias de género.
Resumo:
Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
Se trata de un estudio realizado alrededor de estrategias didácticas que surgen a partir del triángulo equilátero y sus propiedades. Este ha involucrado a estudiantes de licenciatura en Matemáticas de la Universidad de Cundinamarca y a maestros en formación de la Normal Superior de Pasca. A partir de este se propone una unidad didáctica con algunas actividades diseñadas para ser abordadas con Cabri Géomètre y que están dirigidas a estudiantes de grado séptimo de educación básica secundaria. El fundamento de este trabajo es proponer el desarrollo de temáticas a partir de proyectos de Aula y no simplemente desde la información de contenidos teóricos. Finalmente lo que se hace de manera práctica perdura más en el recuerdo de los estudiantes.
Resumo:
Se presenta una propuesta, para un taller de dos sesiones, sobre el trabajo en equipo como una opción para el aprendizaje en el aula de matemáticas, la cual complementa y apoya los planteamientos hechos en los lineamientos curriculares, particularmente los que se refieren a los procesos generales como: razonamiento, resolución y planteamiento de problemas; comunicación; modelación; y elaboración, comparación y ejercitación de procedimientos. La cual esta basada en el fascículo Resolución de problemas y aprendizaje en equipos: una perspectiva desde la Educación Matemática, preparado para el diplomado que la fundación Fedespegue ofrecerá a los profesores interesados en el trabajo en equipo, para el 2008.
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
En este trabajo presentamos el análisis de algunas tareas propuestas a estudiantes de grado 11 en torno a la noción de tasa media de variación y tasa instantánea de variación. La propuesta se diseño utilizando como metodología de investigación el aporte de la escuela francesa en torno a las situaciones didácticas de Brousseau y la ingeniería didáctica. Para el análisis de las tareas se utilizaron las unidades de análisis propuestas por Romero (1998) y Camargo (2001); estudio del contenido, estudio de la comprensión y análisis de la interacción didáctica.
Resumo:
En el presente artículo se considera el tema de la proporcionalidad en distintos niveles y dentro de ámbitos diferentes. En primer lugar, se trata la proporción en el campo de las ecuaciones mediante unos ejemplos extraídos de la historia de las matemáticas. En segundo lugar, se presentan ejemplos relativos a las proporciones en temas de geometría plana y medida de ángulos dentro de un contexto astronómico. En dicho marco, se elabora una maqueta del sistema solar y, posteriormente, se estudian los movimientos de la Tierra para determinar su periodo de rotación y calcular, según la precesión terrestre, estrellas candidatas a ser "la polar del futuro", esto es, la estrella más próxima al polo norte celeste. En general, el artículo muestra diversas actividades que cabe desarrollar dentro del aula, en un ambiente de taller, con miras a potenciar la interdisciplinariedad y el contacto de las matemáticas con el mundo real.
Resumo:
Este artículo describe la investigación-acción que en 1994 realizaron los directivos-docentes del Colegio Distrital La Merced en el marco del Proyecto MEN-EMA. Indagar sobre el funcionamiento del área de matemáticas del colegio facilitó una mejor comprensión y un encuentro de mayor coherencia con la realidad que se vive en la institución en torno a la enseñanza y el aprendizaje de las matemáticas. Se hizo evidente la necesidad de recuperar y aprovechar al máximo los espacios destinados a la discusión, análisis y propuestas sobre el área para consolidar un proceso dinámico que favorezca el trabajo académico, el cambio de actitud y la actualización permanente con miras a incidir en el mejoramiento de la enseñanza y el aprendizaje de las matemáticas en el colegio. Los directivos-docentes descubrieron la importancia de participar -en cuanto líderes y facilitadores- en los procesos pedagógicos que se viven al interior del área.
Resumo:
Con base en el enfoque de resolución de problemas, se describe una experiencia vivida por un grupo de maestros en la que se parte de un problema que es resuelto sin mayor dificultad, pero que, al realizar la mirada retrospectiva, da lugar a un nuevo problema que invita a los participantes a un viaje.
Resumo:
Teniendo en cuenta que la educación tradicional es vista como un modelo pedagógico que entre otras: i) se enfoca en desarrollar en los estudiantes conocimientos algorítmicos, ii) hace un énfasis en la ejercitación de procedimientos, iii) no tiene en cuenta el desarrollo social del individuo dentro de una comunidad y tampoco se enfoca en el proceso que tiene un estudiante al desarrollar una actividad con determinado objeto matemático; hoy en día se propende por buscar perspectivas que le permitan a los estudiantes encontrarle sentido a las actividades que el profesor lleva al aula. A la luz de lo anterior, en Colombia han surgido diversas tendencias que han buscado la renovación pedagógica, didáctica y conceptual en la educación escolar, enmarcadas –la mayoría de estas propuestas– dentro de la idea de que los estudiantes se relacionen directamente con el conocimiento, mientras que el profesor toma una postura de orientador del proceso de aprendizaje del estudiante. Teniendo en cuenta lo anterior, muchos profesores han buscado cambiar sus prácticas tradicionales de enseñanza, un ejemplo de ello lo encontramos en el colectivo de profesores de la Institución Educativa Distrital Colegio Paulo Freire de la localidad de Usme (Bogotá, Colombia); donde los profesores –en concordancia con las ideas del pedagogo Paulo Freire– comparten, como parte de su proyecto educativo, el hecho de ver a la enseñanza como un proceso que debe generar en los estudiantes una comprensión crítica de la realidad social, política y económica en la que él está inmerso.
Resumo:
En el presente trabajo nos interesa principalmente determinar qué concepciones sobre el infinito han desarrollado estudiantes de último año de secundaria y estudiantes universitarios de primer año. Aunque este concepto no aparece como un contenido específico del currículo de matemáticas, sobre él se desarrollan diferentes concepciones en escenarios no escolares que de una u otra manera afectan la construcción de conceptos matemáticos relacionados con él. Además, nos interesa confrontar las ideas que surgen cuando se habla de infinito en lo grande e infinito en lo pequeño, ya que aunque se trata de la construcción de un mismo concepto sus concepciones emergen de manera diferente en la mente de los individuos (Núñez, 1997). Lo que se puede justificar considerando que es más fácil comprender el infinito en lo grande como un proceso que continua sin parar y que no tiene fin, que el infinito en lo pequeño, en donde a pesar de conservarse el hecho de un proceso sin fin, aparece una nueva situación que sugiere que dicho proceso tiene un límite.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.