875 resultados para Solanum sección Lycopersicon
Resumo:
In planning units and lessons every day, teachers face the problem of designing a sequence of activities to promote learning. In particular, they are expected to foster the development of learning goals in their students. Based on the idea of learning path of a task, we describe a heuristic procedure to enable teachers to characterize a learning goal in terms of its cognitive requirements and to analyze and select tasks based on this characterization. We then present an example of how a group of future teachers used this heuristic in a preservice teachers training course and discuss its contributions and constraints.
Resumo:
Los profesores de matemáticas tienen necesidad de herramientas funcionales y bien elaboradas conceptualmente para el ejercicio de su profesión. Una de estas herramientas es la noción de currículo, que hemos presentado resumidamente en este capítulo y que sustentamos en una serie de dimensiones mediante las que estructurar el concepto. Pero con el concepto de currículo el profesor de matemáticas no dispone aún de toda la información necesaria para llevar a cabo sus tareas profesionales. En los próximos capítulos presentaremos nuevos conceptos que completen el dominio conceptual fundado del profesor y que, al mimo tiempo, le proporcionen nuevas herramientas funcionales para su trabajo en el aula de matemáticas.
Resumo:
A finales del siglo XVIII, en Europa el conocimiento científico se había desarrollado extraordinariamente. Surgen los nombres de Lavoisier, Ritcher, Coulomb y Celsius entre otros muchos. Se enuncian leyes en química y física; junto a ellas también florece la matemática de la mano de Euler, Lagrange, D«Alambert, Monge, por citar sólo unos cuantos. Mientras tanto, el atraso de las matemáticas españolas se debía, entre otras causas, al pobre estado en que se encontraban las universidades: aún de tipo medieval y de carácter eclesiástico. Esto lo evidencia Fray Benito Jerónimo Feijoo en la carta titulada Causas del atraso que se padece en España en orden a las ciencias naturales, y el Marqués de la Ensenada quien, en 1748, se lo expresa al rey Fernando VI. Las deficiencias de las universidades tenían que ver con la enseñanza memorística, textos anticuados e interés primordial por disciplinas como derecho, teología y filosofía en detrimento de las matemáticas y las ciencias.
Resumo:
Este libro es resultado de la experiencia vivida por un grupo de investigadores de "una empresa docente", centro de investigación en educación matemática de la Universidad de los Andes, Colombia, y un grupo de directivos-docentes y profesores de matemáticas en el marco del proyecto PRIME I. El proyecto reunió a quince colegios de Bogotá, entre distritales y privados, para realizar una mirada sobre algunos elementos que pueden ser factores relevantes para la calidad de la formación matemática que los colegios dan a sus estudiantes. Otro objetivo del proyecto era diseñar en detalle una estrategia de desarrollo profesional, aplicarla y evaluar sus efectos en los participantes. La naturaleza de la problemática que se aborda en este proyecto requiere que en los colegios se genere una dinámica que favorezca los procesos de reforma educativa para el mejoramiento de la calidad de la educación matemática en secundaria. Para ello es necesario involucrar tanto a directivos como a profesores de matemáticas en actividades que promuevan la reflexión de ellos acerca de su propia práctica --directiva y docente, respectivamente-- y que potencien su capacidad para ser gestores y participantes activos del cambio. El anterior es uno de los supuestos que fundamentan la estrategia de desarrollo profesional aplicada en el proyecto. En este libro se presenta una visión completa de la estrategia de desarrollo profesional implementada con el grupo de directivos y profesores de los colegios participantes en el proyecto PRIME I. El libro está organizado en tres secciones. La primera presenta las bases que sustentan el esquema de desarrollo profesional, describe con algún detalle en qué consistió la estrategia y cómo estuvo secuenciada, y discute algunas de las tensiones que se presentaron en la aplicación de la estrategia al involucrar a los participantes en actividades de investigación e innovación. La segunda sección del libro incluye los artículos producidos por algunos de los directivos de los colegios participantes, y la tercera contiene los artículos de algunos de los profesores acerca de su experiencia de indagación e innovación en sus aulas de clase.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.
Resumo:
En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.
Resumo:
La unidad didáctica que exponemos a continuación aborda los elementos que consideramos ne-cesarios para la solución de las dificultades que los estudiantes de grado séptimo encuentran al resolver situaciones que involucran la adición y sustracción de números enteros. Presentamos la descripción del problema a tratar, la manera en la que lo abordamos y los principales resultados de nuestra experiencia. Posteriormente, en el cuerpo de este documento, presentamos la funda-mentación del diseño de la unidad didáctica, seguido del análisis didáctico para la adición y sus-tracción de números enteros, la descripción y justificación del diseño de la unidad didáctica, la evaluación de la implementación, y el balance de la experiencia y reflexiones hacia el futuro. Fi-nalizamos presentando nuestras conclusiones.
Resumo:
Este capítulo presenta el diseño, implementación y evaluación de una unidad didáctica sobre ecuaciones lineales con una incógnita. Diseñamos e implementamos la unidad didáctica objeto de este trabajo teniendo en cuenta las dificultades que presentan los estudiantes en la traducción al lenguaje algebraico, el planteamiento y solución de ecuaciones lineales de primer grado y la solución de problemas con ecuaciones lineales de primer grado. La interpretación de frases de la cotidianidad que deben ser traducidas a un lenguaje formal para construir expresiones algebraicas y con ellas generar ecuaciones crean una barrera para la utilización real del álgebra. Para alcanzar un aprendizaje significativo de los procesos algebraicos es necesario dotar las actividades de significado dentro del contexto del joven y así tener un aprendizaje concreto que posteriormente sirva de plataforma para el uso de la ecuación como herramienta fundamental en la aplicación del algebra en contextos reales.
Resumo:
En este capítulo presentamos el diseño e implementación de la unidad didáctica del tema ecuaciones lineales de primer grado con una incógnita. En su diseño tuvimos en cuenta los lineamientos y estándares curriculares establecidos por el Ministerio de Educación Nacional (MEN) (2006) y el Decreto 1290 de 2010. El diseño de la unidad didáctica comienza con la prueba inicial diagnóstica. Esta prueba nos permite evidenciar los conocimientos previos de los estudiantes para abordar el tema. Así mismo, planteamos unos objetivos secuenciales con tareas específicas que los caracterizan y contribuyen a su alcance. Esas tareas se desarrollan en diez sesiones de clase. Durante la realización de las tareas propusimos ejercicios no rutinarios y de mecanización. Estas tareas fueron apoyadas con el uso de algunos recursos y materiales didácticos y con diferentes formas de agrupación de los escolares.
Resumo:
El presente documento corresponde al trabajo final de la concentración en Educación Matemática de la Maestría en Educación de la Universidad de los Andes. El trabajo fue elaborado por cuatro profesores licenciados en matemáticas que ejercen en instituciones educativas públicas y privadas en la ciudad de Bogotá y en el departamento de Cundinamarca. Este informe describe el diseño fundamentado y justificado, la implementación y el balance estratégico de la unidad didáctica titulada “Método gráfico para resolver sistemas de ecuaciones lineales 2x2”. El diseño de la unidad didáctica surgió de la selección de un tema matemático que a su vez hace parte de los contenidos incluidos en el currículo oficial para los grados octavo y noveno de educación básica como lo establece el documento de Estándares Básicos de Competencias (Ministerio de Educación Nacional [MEN], 2006a). El diseño se fundamenta a partir del procedimiento de análisis didáctico que constituyó el contenido central de la maestría. Dicho procedimiento permitió concretar elementos previos a la aplicación y la descripción junto con el balance estratégico de la implementación de la unidad didáctica.
Resumo:
Este capítulo es nuestro informe final de la unidad didáctica sobre razones trigonométricas. Es el trabajo final de MAD, la concentración en Educación Matemática de la maestría en Educación de la Universidad de los Andes. Este trabajo nace de constatar que muchos profesores de matemáticas de grado décimo usan las razones trigonométricas como herramienta para solucionar ejercicios de resolución de triángulos, aplicados a problemas, sin tener en cuenta el contexto propio del estudiante. De otro lado, la implementación en el aula de recursos o materiales para la enseñanza de la trigonometría se ha restringido al uso de la calculadora de funciones para determinar ángulos y longitudes en función de una razón trigonométrica particular. Desde esta problemática diseñamos, implementamos y evaluamos la unidad didáctica de razones trigonométricas como propuesta de innovación en la Institución de Educación Distrital (IED) José Joaquín Castro Martínez. Esta unidad didáctica promueve la construcción del concepto razones trigonométricas a partir de situaciones que tienen sentido para el estudiante y que son cercanas a su propio contexto.
Resumo:
Esbozamos la teoría de la mediación semiótica con la cual es posible estudiar y comprender el papel de un profesor que decide aprovechar las características que tienen diferentes herramientas, por ejemplo los programas de geometría dinámica, usadas como mediadoras para favorecer procesos de aprendizaje, desde un punto de vista sociocultural.
Resumo:
En este documento me propongo analizar la experiencia con futuros profesores de matemática cuando se enfrentaron a dos situaciones en las cuales los modelos y la modelación tiene presencia. A través de la experiencia vivida por los futuros profesores se han podido construir algunas reflexiones sobre las posibilidades que este tipo de situaciones ofrece frente la apropiación de significados de los tópicos matemáticos asociados a los contextos tanto en alumnos que han estudiado previamente estas nociones, como en aquellas que no lo han hecho. Finalmente, algunas implicaciones reconocidas por los futuros profesores, también se harán explícitas.
Resumo:
Las Instituciones de Educación Superior,en México, reportan bajos índices de Eficiencia Terminal, hecho relacionado con la reprobación, como es el caso de la Facultad de Matemáticas de la Universidad Autónoma de Yucatán, donde se presentan altos porcentajes de reprobación en la asignatura de Álgebra. Desarrollamos un estudio cualitativo empleando la etnografía, para caracterizar el tratamiento de los contenidos, otorgado por el profesor, y el nivel de asimilación de estos, por parte de los estudiantes. Identificamos las principales representaciones semióticas empleadas por el profesor, donde concluimos que el tratamiento otorgado a los contenidos es preferentemente algebraico y conjuntista. Además, la práctica de evaluación limita a los estudiantes a reproducir los conceptos enseñados.
Resumo:
A través de una serie de tareas desarrolladas con un sofware de geometría dinámica, buscamos propiciar la comprensión de lo que es y lo que expresa una condicional en matemáticas. Por medio de problemas propuestos, en los cuales se debe formular una conjetura, como resultado de la exploración realizada y la determinación de invariantes, se busca que los participantes del taller comprendan que las condiciones establecidas en el antecedente son sucientes para concluir el consecuente y que el consecuente es necesariamente resultado de las condiciones que se reportan en el antecedente.