973 resultados para SEMICONDUCTOR SATURABLE ABSORBERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated electrical properties of vanadyl phthalocyanine (VOPc) metal-insulator-semiconductor (MIS) devices by the measurement of capacitance and conductance, which were fabricated on ordered para-sexiphenyl (p-6P) layer by weak epitaxy growth method. The VOPc/p-6P MIS diodes showed a negligible hysteresis effect at a gate voltage of +/- 20 V and small hysteresis effect at a gate voltage of +/- 40 V due to the low interface trap state density of about 1x10(10) eV(-1) cm(-2). Furthermore, a high transition frequency of about 10 kHz was also observed under their accumulation mode. The results indicated that VOPc was a promising material and was suitable to be applied in active matrix liquid crystal displays and organic logic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate ab initio density-functional calculations are performed to investigate the relationship of the ground-state crystal structures and electronic properties of Ag2BiO3 compound. The results indicate that Ag2BiO3 in Pnna phase, in which the bismuth atoms occupy the same Wyckoff positions, exhibits metallic conductivity, while in Pnn2 and Pn phases, Ag2BiO3 exhibits semiconducting character, which is in agreement with the experimental results. Charge ordering is indeed induced by the crystal inversion twin in the Pnn2 phase compared with the Pnna phase. In the low temperature phase Pn, the charge ordering is similar to that of Pnn2 phase although it is more distorted in Pn phase. In addition, the calculation indicates that the charge ordering is caused in the 6s electron rearrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic semiconductor that can be mass produced is synthesized by end-capping quaterthiophene with naphthyl units (NaT4). An organic thin-film transistor (OTFT, see figure) has been fabricated using this organic semiconductor, and exhibits stability under ambient conditions with a mobility of up to 0.40 cm(2) V-1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Nano-onions" with multifold alternating CdS/CdSe or CdSe/CdS structure have been synthesized via a two-phase approach. The influences of shell on photoluminescence (PL) quantum yields (QYs) and PL lifetimes are investigated and discussed. It is found that the outmost shell plays an important role in the PL QYs and PL lifetimes of the multishells "onion-like" nanocrystals. The PL QYs and PL lifetimes fluctuate regularly with CdSe and CdS shells. The PL QY increases when the nanocrystals have an outmost CdS shell; however, it decreases dramatically with the outmost CdSe shell. The trend of the change of PL lifetimes is consistent with that of the QYs. The crystal structure and composition of the novel nano-onions are characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ln(2)Mo(3)O(12) and Ce2Mo3O12.25 are reduced by hydrogen yielding Mo4+ oxides of the formula Ln(2)Mo(3)O(9) (Ln = La, Ce, Pr, Nd, Sm, Gd and Dy). The new compound Ce2Mo3O9 has the same structure as other Ln(2)Mo(3)O(9) compounds. All of the products are single phase materials and crystallize in a tetragonal scheelite type structure with Mo2O6 clusters. The IR spectra of the Ln(2)Mo(3)O(9) oxides show two absorption bands. These compounds are black n-type semiconductors, and exhibit Curie-Weiss Law behavior from 100K to 250K. Temperature dependence of the electrical properties of these compounds were measured for the first time, and a semiconductor-metal transition was found at about 250 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the motion of ballistic electrons within a superlattice miniband under the influence of an alternating electric field. We show that the interaction of electrons with the self-consistent electromagnetic field generated by the electron current may lead to the transition from regular to chaotic dynamics. We estimate the conditions for the experimental observation of this deterministic chaos and discuss the similarities of the superlattice system with the other condensed matter and quantum optical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the spontaneous creation of a dc voltage across a strongly coupled semiconductor superlattice subjected to THz radiation. We show that the dc voltage may be approximately proportional either to an integer or to a half- integer multiple of the frequency of the applied ac field, depending on the ratio of the characteristic scattering rates of conducting electrons. For the case of an ac field frequency less than the characteristic scattering rates, we demonstrate the generation of an unquantized dc voltage.