847 resultados para Logic Separation
Resumo:
The logic PJ is a probabilistic logic defined by adding (noniterated) probability operators to the basic justification logic J. In this paper we establish upper and lower bounds for the complexity of the derivability problem in the logic PJ. The main result of the paper is that the complexity of the derivability problem in PJ remains the same as the complexity of the derivability problem in the underlying logic J, which is π[p/2] -complete. This implies that the probability operators do not increase the complexity of the logic, although they arguably enrich the expressiveness of the language.
Resumo:
We present a probabilistic justification logic, PPJ, to study rational belief, degrees of belief and justifications. We establish soundness and completeness for PPJ and show that its satisfiability problem is decidable. In the last part we use PPJ to provide a solution to the lottery paradox.
Resumo:
A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.
Resumo:
Dielectrophoresis—the tendency of a material of high dielectric permittivity to migrate in an electrical field gradient to a region of maximum field strength—provides an ideal motive force for manipulating small volumes of biological analytes in microfluidic microsystems. The work described in this thesis was based on the hypothesis that dielectrophoresis could be exploited to provide high-resolution cell separations in microsystems as well as a means for the electrically-controllable manipulation of solid supports for molecular analysis. To this end, a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system was developed and the separation performance evaluated using various types and sizes of polystyrene microspheres as model particles. It was shown that separation of the polystyrene beads was based on the differences in their effective dielectrophoretic properties. The ability of an improved DEP/G-FFF system to separate genetically identical, but phenotypically dissimilar cell types was demonstrated using mixtures of 6m2 mutant rat kidney cells grown under transforming and non-transforming culture conditions. Additionally, a panel of engineered dielectric microspheres was designed with specific, predetermined dielectrophoretic properties such that their dielectrophoretic behaviors would be controllable and predictable. The fabrication method involved the use of gold-coated polystyrene microsphere cores coated with a self-assembled monolayer of alkanethiol and, optionally, a self-assembled monolayer of phospholipid to form a thin-insulating-shell-over-conductive-interior structure. The successful development of the DEP/G-FFF separation system and the dielectrically engineered microspheres provides proof-of-principle demonstrations of enabling dielectrophoresis-based microsystem technology that should provide powerful new methods for the manipulation, separation and identification of analytes in many diverse fields. ^
Resumo:
Lazar Felix Pinkus
Resumo:
Background. Increasing rates of maternal employment highlight the need for non-maternal child care for infants at an earlier age. Several studies have shown that employment induced maternal depression or psychological distress is associated with the child's socio-emotional and cognitive development. However, separation anxiety, a common phenomenon observed among employed mothers during early years, has seldom been studied. Therefore, the purpose of this study was to evaluate the role of maternal separation anxiety in the child's cognitive development.^ Methods. Data were obtained from Phase I (birth to 36 months) of the National Institute of Child Health and Human Development, Study of Early Child Care and Youth Development (NICHD SECCYD). Bivariate and multivariate analyses were performed to determine the association between separation anxiety groups and child outcomes. Multivariate analysis was also used to examine the mediating and/or moderating effect of sensitivity and moderating effect of difficult temperament.^ Results. Separation anxiety showed a negative association with the Bracken, attachment security, maternal sensitivity and psychological state. Children whose mothers never reported high levels of separation anxiety showed higher levels of school readiness and attachment security compared to those whose mothers experienced high levels of separation anxiety at least once. There was a significant interaction between separation anxiety and maternal sensitivity for the Bracken and attachment security indicating the moderating effect of sensitivity. Maternal sensitivity was also found to partially mediate the association between high levels of separation anxiety and school readiness or attachment security. However, the interaction between difficult temperament and separation anxiety was not significant for any of the child outcomes. ^ Conclusions. High levels of separation anxiety have a negative impact on school readiness, attachment security, maternal sensitivity and psychological state. In addition, mothers who experience high levels of separation anxiety but are sensitive during the mother-child interaction have children with high school readiness and attachment security compared to those who are less sensitive.^ Keywords. Maternal separation anxiety, School readiness. ^
Resumo:
The Laredo Epidemiology Project is a study of the patterns of degenerative disease, particularly cancer, in the families of Laredo, Texas. The genealogical history of Laredo was reconstructed by the grouping of 350,000 individual church and civil vital event records into multi-generational families, with record linkage based on matching names. Mortality data from death records are mapped onto these pedigrees for analysis. This dissertation describes the construction of the data base and the logic upon which decisions were based. ^
Resumo:
Two sets of mass spectrometry-based methods were developed specifically for the in vivo study of extracellular neuropeptide biochemistry. First, an integrated micro-concentration/desalting/matrix-addition device was constructed for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) to achieve attomole sensitivity for microdialysis samples. Second, capillary electrophoresis (CE) was incorporated into the above micro-liquid chromatography (LC) and MALDI MS system to provide two-dimensional separation and identification (i.e. electrophoretic mobility and molecular mass) for the analysis of complex mixtures. The latter technique includes two parts of instrumentation: (1) the coupling of a preconcentration LC column to the inlet of a CE capillary, and (2) the utilization of a matrix-precoated membrane target for continuous CE effluent deposition and for automatic MALDI MS analysis (imaging) of the CE track.^ Initial in vivo data reveals a carboxypeptidase A (CPA) activity in rat brain involved in extracellular neurotensin metabolism. Benzylsuccinic acid, a CPA inhibitor, inhibited neurotensin metabolite NT1-12 formation by 70%, while inhibitors of other major extracellular peptide metabolizing enzymes increased NT1-12 formation. CPA activity has not been observed in previous in vitro experiments. Next, the validity of the methodology was demonstrated in the detection and structural elucidation of an endogenous neuropeptide, (L)VV-hemorphin-7, in rat brain upon ATP stimulation. Finally, the combined micro-LC/CE/MALDI MS was used in the in vivo metabolic study of peptide E, a mu-selective opioid peptide with 25 amino acid residues. Profiles of 88 metabolites were obtained, their identity being determined by their mass-to-charge ratio and electrophoretic mobility. The results indicate that there are several primary cleavage sites in vivo for peptide E in the release of its enkephalin-containing fragments. ^
Resumo:
This study characterises the shape of the flow separation zone (FSZ) and wake region over large asymmetric bedforms under tidal flow conditions. High resolution bathymetry, flow velocity and turbulence data were measured along two parallel transects in a tidal channel covered with bedforms. The field data are used to verify the applicability of a numerical model for a systematic study using the Delft3D modelling system and test the model sensitivity to roughness length. Three experiments are then conducted to investigate how the FSZ size and wake extent vary depending on tidally-varying flow conditions, water levels and bathymetry. During the ebb, a large FSZ occurs over the steep lee side of each bedform. During the flood, no flow separation develops over the bedforms having a flat crest; however, a small FSZ is observed over the steepest part of the crest of some bedforms, where the slope is locally up to 15°. Over a given bedform morphology and constant water levels, no FSZ occurs for velocity magnitudes smaller than 0.1 m s**-1; as the flow accelerates, the FSZ reaches a stable size for velocity magnitudes greater than 0.4 m s**-1. The shape of the FSZ is not influenced by changes in water levels. On the other hand, variations in bed morphology, as recorded from the high-resolution bathymetry collected during the tidal cycle, influence the size and position of the FSZ: a FSZ develops only when the maximum lee side slope over a horizontal distance of 5 m is greater than 10°. The height and length of the wake region are related to the length of the FSZ. The total roughness along the transect lines is an order of magnitude larger during the ebb than during the flood due to flow direction in relation to bedform asymmetry: during the ebb, roughness is created by the large bedforms because a FSZ and wake develops over the steep lee side. The results add to the understanding of hydrodynamics of natural bedforms in a tidal environment and may be used to better parameterise small-scale processes in large-scale studies.
Resumo:
Literature on agency problems arising between controlling and minority owners claim that separation of cash flow and control rights allows controllers to expropriate listed firms, and further that separation emerges when dual class shares or pyramiding corporate structures exist. Dual class share and pyramiding coexisted in listed companies of China until discriminated share reform was implemented in 2005. This paper presents a model of controller to expropriate behavior as well as empirical tests of expropriation via particular accounting items and pyramiding generated expropriation. Results show that expropriation is apparent for state controlled listed companies. While reforms have weakened the power to expropriate, separation remains and still generates expropriation. Size of expropriation is estimated to be 7 to 8 per cent of total asset at mean. If the "one share, one vote" principle were to be realized, asset inflation could be reduced by 13 percent.
Resumo:
After more than a decade of development work and hopes, the usage of mobile Internet has finally taken off. Now, we are witnessing the first signs of evidence of what might become the explosion of mobile content and applications that will be shaping the (mobile) Internet of the future. Similar to the wired Internet, search will become very relevant for the usage of mobile Internet. Current research on mobile search has applied a limited set of methodologies and has also generated a narrow outcome of meaningful results. This article covers new ground, exploring the use and visions of mobile search with a users' interview-based qualitative study. Its main conclusion builds upon the hypothesis that mobile search is sensitive to a mobile logic different than today's one. First, (advanced) users ask for accessing with their mobile devices the entire Internet, rather than subsections of it. Second, success is based on new added-value applications that exploit unique mobile functionalities. The authors interpret that such mobile logic involves fundamentally the use of personalised and context-based services.
Resumo:
The efficiency of power optimization tools depends on information on design power provided by the power estimation models. Power models targeting different power groups can enable fast identification of the most power consuming parts of design and their properties. The accuracy of these estimation models is highly dependent on the accuracy of the method used for their characterization. The highest precision is achieved by using physical onboard measurements. In this paper, we present a measurement methodology that is primarily aimed at calibrating and validating high-level dynamic power estimation models. The measurements have been carefully designed to enable the separation of the interconnect power from the logic power and the power of the clock circuitry, so that each of these power groups can be used for the corresponding model validation. The standard measurement uncertainty is lower than 2% of the measured value even with a very small number of repeated measurements. Additionally, the accuracy of a commercial low-level power estimation tool has been also assessed for comparison purposes. The results indicate that the tool is not suitable for power estimation of data path-oriented designs.
Resumo:
In this paper, a new countermeasure against power and electromagnetic (EM) Side Channel Attacks (SCA) on FPGA implemented cryptographic algorithms is proposed. This structure mainly focuses on a critical vulnerability, Early Evaluation, also known as Early Propagation Effect (EPE), which exists in most conventional SCA-hardened DPL (Dual-rail with Precharge Logic) solutions. The main merit of this proposal is that the EPE can be effectively prevented by using a synchronized non regular precharge network, which maintains identical routing between the original and mirror parts, where costs and design complexity compared with previous EPE-resistant countermeasures are reduced, while security level is not sacrificed. Another advantage for our Precharge Absorbed(PA) - DPL method is that its Dual-Core style (independent architecture for true and false parts) could be generated using partial reconfiguration. This helps to get a dynamic security protection with better energy planning. That means system only keeps the true part which fulfills the normal en/decryption task in low security level, and reconfigures the false parts once high security level is required. A relatively limited clock speed is a compromise, since signal propagation is restricted to a portion of the clock period. In this paper, we explain the principles of PA-DPL and provide the guidelines to design this structure. We experimentally validate our methods in a minimized AES co-processor on Xilinx Virtex-5 board using electromagnetic (EM) attacks.
Resumo:
Publicación de la Sede del Consejo Consultor de Castilla y León en Zamora en la revista de arquitectura IA&B (Mumbai). El proyecto de Zamora se centra en el diálogo entre una pieza cristina de vidrio y el grueso muro de piedra perimetral. Estas dos fachadas entran en relación gracias a un patio perimetral que tensa el contacto entre entre el vidrio y la piedra. Se hace especial mención de la estricta precisión y racionalidad del proyecto. La publicación contiene textos, dibujos planimétricos, fotografías y materiales del proceso de investigación en el proyecto (croquis y fotografías de maquetas).
Resumo:
El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.