The Complexity of Non-Iterated Probabilistic Justification Logic


Autoria(s): Kokkinis, Ioannis
Contribuinte(s)

Gyssens, Marc

Simari, Guillermo

Data(s)

2016

Resumo

The logic PJ is a probabilistic logic defined by adding (noniterated) probability operators to the basic justification logic J. In this paper we establish upper and lower bounds for the complexity of the derivability problem in the logic PJ. The main result of the paper is that the complexity of the derivability problem in PJ remains the same as the complexity of the derivability problem in the underlying logic J, which is π[p/2] -complete. This implies that the probability operators do not increase the complexity of the logic, although they arguably enrich the expressiveness of the language.

Formato

application/pdf

Identificador

http://boris.unibe.ch/79973/8/chp%253A10.1007%252F978-3-319-30024-5_16.pdf

Kokkinis, Ioannis (2016). The Complexity of Non-Iterated Probabilistic Justification Logic. In: Gyssens, Marc; Simari, Guillermo (eds.) Foundations of Information and Knowledge Systems - 9th International Symposium, FoIKS 2016, Linz, Austria, March 7-11, 2016. Proceedings. Lecture Notes in Computer Science: Vol. 9616 (pp. 292-310). Cham: Springer 10.1007/978-3-319-30024-5_16 <http://dx.doi.org/10.1007/978-3-319-30024-5_16>

doi:10.7892/boris.79973

info:doi:10.1007/978-3-319-30024-5_16

urn:issn:0302-9743

urn:isbn:978-3-319-30023-8

Idioma(s)

eng

Publicador

Springer

Relação

http://boris.unibe.ch/79973/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Kokkinis, Ioannis (2016). The Complexity of Non-Iterated Probabilistic Justification Logic. In: Gyssens, Marc; Simari, Guillermo (eds.) Foundations of Information and Knowledge Systems - 9th International Symposium, FoIKS 2016, Linz, Austria, March 7-11, 2016. Proceedings. Lecture Notes in Computer Science: Vol. 9616 (pp. 292-310). Cham: Springer 10.1007/978-3-319-30024-5_16 <http://dx.doi.org/10.1007/978-3-319-30024-5_16>

Palavras-Chave #000 Computer science, knowledge & systems #510 Mathematics
Tipo

info:eu-repo/semantics/bookPart

info:eu-repo/semantics/publishedVersion

PeerReviewed