950 resultados para Clases subalternas5Estado
Resumo:
Esta comunicación presenta resultados parciales de un estudio de dos casos (en España y Armenia), que ha tratado de conocer la importancia que tienen las oportunidades de aprendizaje (OTL) que ofrece el profesor en su aula (particularmente, en este documento tratamos el tipo de tareas que éste selecciona y propone) a la hora de facilitar la adquisición de las competencias matemáticas (CM) de sus estudiantes. Tomamos la información de observaciones de clases y entrevista (a dos profesores de Educación Secundaria) y de prueba (a los estudiantes de 15 años) y realizamos análisis de datos combinando técnicas cualitativas y cuantitativas. Los resultados de nuestra investigación, relativos al tipo de tareas, han constatado una fuerte relación de las CM de los estudiantes con la oportunidad de resolver cierto tipo de tareas (demanda cognitiva y situaciones/contextos en las que se plantean).
Resumo:
El trabajo tiene por objetivo describir algunos obstáculos y desafíos que enfrentan los profesores de Matemática al iniciar actividades de modelización. A su vez, se busca caracterizar las ventajas y desventajas que le encuentran los profesores a esta estrategia de enseñanza cuando la implementan en sus clases habituales en la escuela secundaria. Los profesores realizaron una capacitación virtual, referida a la enseñanza de la Matemática con nuevos recursos, donde la resolución de problemas y las actividades de modelización fueron el eje de curso. Los resultados muestran que a los profesores se les presentan dificultades en el momento de abordar actividades de modelización, lo que conlleva a que no siempre sea vista como una estrategia de enseñanza viable de ser utilizada en las clases.
Resumo:
En este trabajo de investigación se presenta una guía de aprendizaje construida para utilizar una diversidad de herramientas tecnológicas y matemáticas como parte de una estrategia didáctica, estructurada en función de las necesidades de los estudiantes, donde se cuenta con una variedad de problemas contextuales y factibles, considerando una sociedad en crisis y cuya repercusión se proyecta en el proceso educativo. En la aplicación de ésta, se puede apreciar el hecho de la intencionalidad para utilizar las herramientas, las construcciones de conceptos estadísticos, la motivación del trabajo en equipo y los argumentos presentados por los estudiantes para dar significado a la media aritmética y la noción de variabilidad; como logran darle sentido a la toma de decisiones en forma empírica, basados en los efectos que presenta la inestabilidad de los datos.
Resumo:
Considerando el concepto de aprendizaje sistémico, en el que se vinculan en relación dinámica: el docente, el alumno y el conocimiento, interesa conocer la relación entre las concepciones y las competencias de los docentes de matemática de enseñanza media en relación con el tema “el rol del problema en la formación matemática de los alumnos de la Escuela Media”. Para ello se analizan las respuestas de profesores a cuestiones agrupadas en cuatro categorías de preguntas referidas a sus concepciones sobre la naturaleza del problema y a la ubicación del problema en la planificación de la clase.
Resumo:
Mostraremos a continuación la posibilidad de generar modelos matemáticos simples a partir de la explicación de un hecho físico. El marco teórico de partida es el de la explicación científica con la estructura del modelo nomológico deductivo. El uso de modelos matemáticos en este marco genera herramientas didácticas de distinto tipo, en este articulo desarrollamos brevemente el diseño de proyectos de investigación para los alumnos. El docente puede generar y luego utilizar estos proyectos de distintos modos, por ejemplo, como actividad de cierre de un curso, o también para generar una discontinuidad en el transcurso de la cursada, como actividad en paralelo que ocupe algún momento de las clases, etc.
Resumo:
Se presentan los resultados obtenidos de un curso, “Taller de elaboración de secuencias didácticas”, diseñado con el objetivo de contribuir a la formación y actualización de los profesores de matemáticas del Colegio de Estudios Científicos y Tecnológicos del Estado de Yucatán (CEC y TEY), en el conocimiento y aplicación de las técnicas y procedimientos que configuran un modelo didáctico para la producción de secuencias didácticas para cursos de Matemáticas; de tal manera, que los profesores pudieran aplicarlas en el salón de clases con diferentes grupos de estudiantes, de acuerdo a las características propias de los mismos. Tomando como referencia, documentos y libros de texto acordes a las bases teóricas que se consideran en la Reforma Curricular de la Educación Media Superior Tecnológica, el Modelo de la Educación Media Superior Tecnológica; así como los programas de Matemáticas que se llevan en los diferentes planteles del CEC y TEY.
Resumo:
Actualmente la influencia que tiene la tecnología en la Educación Matemática como medio facilitador tanto en el proceso de aprendizaje como en el de enseñanza de algunas temáticas de las matemáticas escolares, ha generado su inclusión en las instituciones educativas como es el caso, de las calculadoras graficadoras. No obstante, en general son varios los profesores de matemáticas que aunque cuentan con este tipo de recursos para desarrollar sus clases, se abstienen de utilizarlos porque no saben cómo ni en qué momento hacerlo. Por tanto, se presenta algunas actividades sobre ciertas temáticas de la matemática escolar en donde sea factible el uso de herramientas básicas de la calculadora.
Resumo:
Con la propuesta, en mi clase se vale “meter la pata”, pretendo desarrollar en los estudiantes las competencias matemáticas y ciudadanas, a través de la participación activa al interior de las clases. Para ello, parto de dos premisas: (a) el error como una oportunidad para generar conocimiento y (b) las preguntas como el medio para lograr llegar a conceptos claros y argumentos válidos en relación con el objeto matemático que se estudia. Desarrollo la propuesta a partir de tres tareas diseñadas en la unidad didáctica Razones trigonométricas vistas a través de múltiples lentes que se fundamenta en el modelo del análisis didáctico. Los resultados obtenidos hasta el momento reflejan un aumento en el interés que los estudiantes tienen por el área, en el respeto por las ideas de otros y en la utilización de argumentos válidos.
Resumo:
Tomando el aprendizaje como participación en prácticas discursivas, presentamos un estudio sobre el aprendizaje de la Geometría en clases de secundaria con alumnado en situación de riesgo social. Bajo el supuesto del uso de la tecnología como promotor de participación, se diseñó e implementó una secuencia didáctica en un entorno de geometría dinámica. En el análisis de casos de estudiantes se consideraron aspectos cognitivos, afectivos e instrumentales de modo integrado. En este informe se ilustran dos resultados derivados del desarrollo de un caso. Por un lado, la dificultad por definir la noción de incentro se asocia a un uso del entorno informático poco significativo matemáticamente. Por otro, el rechazo a la exposición pública en la pizarra digital interactiva se asocia a la experiencia de dificultades en procesos de pensamiento matemático.
Resumo:
Sobre la base de investigaciones que realizamos previamente acerca de los errores frecuentes de nuestros alumnos en las cuestiones de Álgebra básica, que les impiden incorporar adecuadamente conceptos del Análisis Matemático, en la cátedra de esta asignatura de la Facultad de Ciencias Económicas nos propusimos realizar diversas acciones que tiendan a modificar esa situación, con el propósito de promover que el alumno emprenda un aprendizaje eficaz del Cálculo. Entre otras acciones planificamos un conjunto de clases previas al desarrollo de la asignatura en las que, sobre la base de materiales escritos de guía para el aprendizaje y con la incorporación del uso de la herramienta computacional, el alumno tendrá oportunidad de efectuar actividades de introducción-motivación sobre conocimientos previos, con respecto a las falencias más frecuentes que se han detectado, la cantidad y calidad de los errores que, en general, cometen con el uso de la matemática básica. Otras actividades son de consolidación y/o de refuerzo, de recuperación y/o ampliación a medida que se evalúa el avance del alumno. El uso de la herramienta computacional, en este caso, el Programa Matemático-Informático DERIVE, tiene por objeto proporcionar al alumno un primer contacto con el mismo y aprovecharlo como recurso pedagógico en el aula, motivante y colaborador en las realización de las actividades propuestas.
Resumo:
El Programa ‘Paquetes Didácticos para los cursos de Matemáticas’ de la Academia Institucional de Matemáticas del Nivel Medio Superior (AIM-NMS-IPN) en colaboración con la Dirección de Tecnología Educativa del Instituto Politécnico Nacional, desarrollaron el Paquete Didáctico de Álgebra para el Nivel Medio Superior que consiste en un libro y un disco compacto con software especializado. El paquete didáctico tiene como propósito dotar al profesor y al estudiante de materiales de calidad, elaborados usando el conocimiento generado por las investigaciones, es un conjunto de materiales que concretan operativamente los cuatro organizadores del currículo: objetivos, contenidos, metodología y evaluación. En particular, las estrategias didácticas y metodológicas, los conocimientos matemáticos y los elementos teóricos para ampliar la cultura matemática de los estudiantes. Estos materiales pretenden apoyar las clases presenciales con materiales innovadores que permitan lograr aprendizaje significativo en los alumnos que cursan esta materia. En este trabajo se presenta un informe de los resultados del cuestionario de opinión aplicado a los alumnos de los grupos piloto con el objetivo de conocer sus impresiones al utilizar este tipo de materiales, así como las mejoras que propongan, todo esto para lograr que el Paquete Didáctico responda realmente a las necesidades de los alumnos.
Resumo:
El presente trabajo expone ciertos aspectos de los números racionales e irracionales que generalmente son poco trabajados en las clases sobre los números reales en el bachillerato. La célebre paradoja de Aquiles y la tortuga sirve de pretexto para analizar a los números racionales y su periodicidad vía la noción de serie. Por lo que respecta a los números irracionales, la comparación del lado de un cuadrado y su diagonal nos sirven para introducir el concepto de inconmensurabilidad. Se presenta también un pequeño software, a manera de demo para apoyo de los temas tratados.
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
Uno de los desafíos esenciales de la enseñanza de las matemáticas consiste en la utilización de métodos y medios de enseñanza que propicien en los alumnos la formación de un conocimiento científico. Se asume como referente teórico los métodos del conocimiento científico de las ciencias pedagógicas, teniendo en cuenta que cuando el conocimiento que se quiere formar es científico, tiene que crear una actividad cognoscitiva nueva, lo que hace que la enseñanza y los medios de enseñanza que utilicemos sean diferentes, particularmente por el lenguaje que tiene la matemática, que ha de ser el lenguaje científico donde, además del habitual, se da el simbólico. El objetivo del trabajo es fundamentar la utilización de las calculadoras gráficas como un medio muy importante y actual para lograr formar en los alumnos un conocimiento científico de las matemáticas, y precisar que no basta con la enseñanza expositiva para que el estudiante se forme un conocimiento científico, pues la actitud científica hay que formarla, educarla en los estudiantes. Se caracterizan los niveles del conocimiento científico de las matemáticas, el empírico y el teórico y se precisa que ambos niveles se distinguen por los métodos de enseñanza y aprendizaje, donde el empírico emplea métodos que permiten describir los hechos, y es por eso que para este nivel se recomienda la visualización con la utilización de las calculadoras gráficas, y el nivel teórico utiliza métodos para distinguir las esencias, por ejemplo el hipotético-deductivo, el lógico histórico, la ascensión de lo abstracto a lo concreto pensado, etc. El trabajo aporta como resultado los principios para la utilización de las calculadoras gráficas en las clases de matemáticas en aras de formar un conocimiento científico en la enseñanza de esta materia.
Resumo:
En el proceso del enseñanza y aprendizaje de las matemáticas entre el docente y el estudiante, existe una relación básica e importante, es el lenguaje, por ello ya existen diversas técnicas de cómo hablarles a los educandos, pero ¿qué pasa cuando los estudiantes son sordos?, con la nueva ley de inclusión no existe ni la posibilidad de no aceptarlos o rehusar el cargo, entonces surge el reto de cómo enfrentar lo mejor posible dicho proceso. Esta comunicación trata de mostrar la experiencia de como un profesor sin ser capacitado para tal situación, buscando alternativas para sus clases con población sorda, en grados Decimo y Undécimo de la I.E. Camacho Carreño, de la ciudad de Bucaramanga.