823 resultados para feedback loop
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
We show that tree level superstring theories on certain supersymmetric backgrounds admit a symmetry which we call "fermionic T-duality". This is a non-local redefinition of the fermionic worldsheet fields similar to the redefinition we perform on bosonic variables when we do an ordinary T-duality. This duality maps a supersymmetric background to another supersymmetric background with different RR fields and a different dilaton. We show that a certain combination of bosonic and fermionic T-dualities maps the full superstring theory on AdS(5) x S-5 back to itself in such a way that gluon scattering amplitudes in the original theory map to something very close to Wilson loops in the dual theory. This duality maps the "dual superconformal symmetry" of the original theory to the ordinary superconformal symmetry of the dual model. This explains the dual superconformal invariance of planar scattering amplitudes of N = 4 super Yang Mills and also sheds some light on the connection between amplitudes and Wilson loops. In the appendix, we propose a simple prescription for open superstring MHV tree amplitudes in a flat background.
Resumo:
We derive a new non-singular tree-level KLT relation for the n = 5-point amplitudes, with manifest 2(n-2)! symmetry, using information from one-loop amplitudes and IR divergences, and speculate how one might extend it to higher n-point functions. We show that the subleading-color N = 4 SYM 5-point amplitude has leading IR divergence of 1/epsilon, which is essential for the applications of this paper. We also propose a relation between the subleading-color N = 4 SYM and N = 8 supergravity 1-loop 5-point amplitudes, valid for the IR divergences and possibly for the whole amplitudes, using techniques similar to those used in our derivation of the new KLT relation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We proposed a simple feedback control method to suppress chaotic behavior in oscillators with limited power supply. The small-amplitude controlling signal is applied directly to the power supply system, so as to alter the characteristic curve of the driving motor. Numerical results are presented showing the method efficiency for a wide range of control parameters. Moreover, we have found that, for some parameters, this kind of control may introduce coexisting periodic attractors with complex basins of attraction and, therefore, serious problems with predictability of the final state the system will asymptote to. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)