Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: Part I: Ideal energy source
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/01/2009
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) In this paper, an optimal linear control is applied to control a chaotic oscillator with shape memory alloy (SMA). Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. This work is presented in two parts. Part I considers the so-called ideal problem. In the ideal problem, the excitation source is assumed to be an ideal harmonic excitation. |
Formato |
139-149 |
Identificador |
http://dx.doi.org/10.1007/s11071-008-9350-6 Nonlinear Dynamics. Dordrecht: Springer, v. 55, n. 1-2, p. 139-149, 2009. 0924-090X http://hdl.handle.net/11449/24849 10.1007/s11071-008-9350-6 WOS:000262088500010 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Nonlinear Dynamics |
Direitos |
closedAccess |
Palavras-Chave | #Chaos control #Shape memory alloy #Nonlinear dynamic #Linear feedback control |
Tipo |
info:eu-repo/semantics/article |