932 resultados para TREBBLE-BISHNOI EQUATION
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
In this work the turbulent flow of the Non-Newtonian Carreau-Yasuda fluid will be studied. A skin friction equation for the turbulent flow of Carreau-Yasuda fluids will be derived assuming a logarithmic behavior of the turbulent mean velocity for the near wall flow out of the viscous sub layer. An alternative near wall characteristic length scale which takes into account the effects of the relaxation time will be introduced. The characteristic length will be obtained through the analysis of viscous region near the wall. The results compared with experimental data obtained with Tylose (methyl hydroxil cellulose) solutions showing good agreement. The relations between scales integral and dissipative obtained for length, time, velocity, kinetic energy, and vorticity will be derived for this type of fluid. When the power law index approach to unity the relations reduces to Newtonian case.
Resumo:
Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domínio da freqüência. Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões e instabilidades devido às ondas evanescentes e produz imagens com menos ruídos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também tem uma boa resposta para refletores com mergulhos íngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF), phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).
Resumo:
We prove the approximate controllability of the semilinear heat equation in RN, when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial gradient Ñu. The approximate controllability is viewed as the limit of a sequence of optimal control problems. In order to avoid the difficulties related to the lack of compactness of the Sobolev embeddings, we work with the similarity variables and use weighted Sobolev spaces.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative method, an asymptotic model for small wave steepness ratio is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical results is performed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Fokker-Planck equation is studied through its relation to a Schrodinger-type equation. The advantage of this combination is that we can construct the probability distribution of the Fokker-Planck equation by using well-known solutions of the Schrodinger equation. By making use of such a combination, we present the solution of the Fokker-Planck equation for a bistable potential related to a double oscillator. Thus, we can observe the temporal evolution of the system describing its dynamic properties such as the time tau to overcome the barrier. By calculating the rates k = 1/tau as a function of the inverse scaled temperature 1/D, where D is the diffusion coefficient, we compare the aspect of the curve k x 1/D, with the ones obtained from other studies related to four different kinds of activated process. We notice that there are similarities in some ranges of the scaled temperatures, where the different processes follow the Arrhenius behavior. We propose that the type of bistable potential used in this study may be used, qualitatively, as a simple model, whose rates share common features with the rates of some single rate-limited thermally activated processes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we study the periodic orbits of the third-order differential equation x ′′′−µx ′′+ x ′ − µx = εF (x, x ′ , x ′′), where ε is a small parameter and the function F is of class C 2 .
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)