Approximate controllability for the semilinear heat equation in R<sup>N</sup> involving gradient terms
Data(s) |
15/12/2014
15/12/2014
2003
|
---|---|
Resumo |
We prove the approximate controllability of the semilinear heat equation in R<sup>N</sup>, when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial gradient Ñu. The approximate controllability is viewed as the limit of a sequence of optimal control problems. In order to avoid the difficulties related to the lack of compactness of the Sobolev embeddings, we work with the similarity variables and use weighted Sobolev spaces. |
Identificador |
MENEZES, Silvano Bezerra de. Approximate controllability for the semilinear heat equation in R<sup>N</sup> involving gradient terms. Computational & Applied Mathematics, São Carlos, v. 22, n. 1, p. 123-148, 2003. Disponível em: <http://www.scielo.br/pdf/cam/v22n1/08v22n1.pdf>. Acesso em: 28 nov. 2014. 1807-0302 |
Idioma(s) |
eng |
Direitos |
Open Access |
Palavras-Chave | #Equação diferencial eliptica #Equação diferencial não-linear #Equação de calor #Controlabilidade aproximada finita #Espaço de Sobolev |
Tipo |
article |