Approximate controllability for the semilinear heat equation in R<sup>N</sup> involving gradient terms


Autoria(s): MENEZES, Silvano Dias Bezerra de
Data(s)

15/12/2014

15/12/2014

2003

Resumo

We prove the approximate controllability of the semilinear heat equation in R<sup>N</sup>, when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial gradient Ñu. The approximate controllability is viewed as the limit of a sequence of optimal control problems. In order to avoid the difficulties related to the lack of compactness of the Sobolev embeddings, we work with the similarity variables and use weighted Sobolev spaces.

Identificador

MENEZES, Silvano Bezerra de. Approximate controllability for the semilinear heat equation in R<sup>N</sup> involving gradient terms. Computational & Applied Mathematics, São Carlos, v. 22, n. 1, p. 123-148, 2003. Disponível em: <http://www.scielo.br/pdf/cam/v22n1/08v22n1.pdf>. Acesso em: 28 nov. 2014.

1807-0302

http://repositorio.ufpa.br/jspui/handle/2011/6161

Idioma(s)

eng

Direitos

Open Access

Palavras-Chave #Equação diferencial eliptica #Equação diferencial não-linear #Equação de calor #Controlabilidade aproximada finita #Espaço de Sobolev
Tipo

article