Multiplicity of solutions for a biharmonic equation with subcritical or critical growth


Autoria(s): Figueiredo, Giovany M.; Pimenta, Marcos T. O.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/07/2013

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

We consider the fourth-order problem{epsilon(4)Delta(2)u + V(x)u = f(u) + gamma vertical bar u vertical bar(2)**-(2)u in R-N u is an element of H-2(R-N),where epsilon > 0, N >= 5, V is a positive continuous potential, f is a function with subcritical growth and gamma is an element of {0,1}. We relate the number of solutions with the topology of the set where V attain its minimum values. We consider the subcritical case gamma = 0 and the critical case gamma = 1. In the proofs we apply Ljusternik-Schnirelmann theory.

Formato

519-534

Identificador

http://projecteuclid.org/euclid.bbms/1378314513

Bulletin of the Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 20, n. 3, p. 519-534, 2013.

1370-1444

http://hdl.handle.net/11449/113412

WOS:000325667500010

Idioma(s)

eng

Publicador

Belgian Mathematical Soc Triomphe

Relação

Bulletin of the Belgian Mathematical Society - Simon Stevin

Direitos

closedAccess

Palavras-Chave #variational methods #biharmonic equations #nontrivial solutions
Tipo

info:eu-repo/semantics/article