Multiplicity of solutions for a biharmonic equation with subcritical or critical growth
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
03/12/2014
03/12/2014
01/07/2013
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) We consider the fourth-order problem{epsilon(4)Delta(2)u + V(x)u = f(u) + gamma vertical bar u vertical bar(2)**-(2)u in R-N u is an element of H-2(R-N),where epsilon > 0, N >= 5, V is a positive continuous potential, f is a function with subcritical growth and gamma is an element of {0,1}. We relate the number of solutions with the topology of the set where V attain its minimum values. We consider the subcritical case gamma = 0 and the critical case gamma = 1. In the proofs we apply Ljusternik-Schnirelmann theory. |
Formato |
519-534 |
Identificador |
http://projecteuclid.org/euclid.bbms/1378314513 Bulletin of the Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 20, n. 3, p. 519-534, 2013. 1370-1444 http://hdl.handle.net/11449/113412 WOS:000325667500010 |
Idioma(s) |
eng |
Publicador |
Belgian Mathematical Soc Triomphe |
Relação |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
Direitos |
closedAccess |
Palavras-Chave | #variational methods #biharmonic equations #nontrivial solutions |
Tipo |
info:eu-repo/semantics/article |