941 resultados para Material science
Resumo:
The primary purpose of this research was to examine individual differences in learning from worked examples. By integrating cognitive style theory and cognitive load theory, it was hypothesised that an interaction existed between individual cognitive style and the structure and presentation of worked examples in their effect upon subsequent student problem solving. In particular, it was hypothesised that Analytic-Verbalisers, Analytic-Imagers, and Wholist-lmagers would perform better on a posttest after learning from structured-pictorial worked examples than after learning from unstructured worked examples. For Analytic-Verbalisers it was reasoned that the cognitive effort required to impose structure on unstructured worked examples would hinder learning. Alternatively, it was expected that Wholist-Verbalisers would display superior performances after learning from unstructured worked examples than after learning from structured-pictorial worked examples. The images of the structured-pictorial format, incongruent with the Wholist-Verbaliser style, would be expected to split attention between the text and the diagrams. The information contained in the images would also be a source of redundancy and not easily ignored in the integrated structured-pictorial format. Despite a number of authors having emphasised the need to include individual differences as a fundamental component of problem solving within domainspecific subjects such as mathematics, few studies have attempted to investigate a relationship between mathematical or science instructional method, cognitive style, and problem solving. Cognitive style theory proposes that the structure and presentation of learning material is likely to affect each of the four cognitive styles differently. No study could be found which has used Riding's (1997) model of cognitive style as a framework for examining the interaction between the structural presentation of worked examples and an individual's cognitive style. 269 Year 12 Mathematics B students from five urban and rural secondary schools in Queensland, Australia participated in the main study. A factorial (three treatments by four cognitive styles) between-subjects multivariate analysis of variance indicated a statistically significant interaction. As the difficulty of the posttest components increased, the empirical evidence supporting the research hypotheses became more pronounced. The rigour of the study's theoretical framework was further tested by the construction of a measure of instructional efficiency, based on an index of cognitive load, and the construction of a measure of problem-solving efficiency, based on problem-solving time. The consistent empirical evidence within this study that learning from worked examples is affected by an interaction of cognitive style and the structure and presentation of the worked examples emphasises the need to consider individual differences among senior secondary mathematics students to enhance educational opportunities. Implications for teaching and learning are discussed and recommendations for further research are outlined.
Resumo:
The material presented in this thesis may be viewed as comprising two key parts, the first part concerns batch cryptography specifically, whilst the second deals with how this form of cryptography may be applied to security related applications such as electronic cash for improving efficiency of the protocols. The objective of batch cryptography is to devise more efficient primitive cryptographic protocols. In general, these primitives make use of some property such as homomorphism to perform a computationally expensive operation on a collective input set. The idea is to amortise an expensive operation, such as modular exponentiation, over the input. Most of the research work in this field has concentrated on its employment as a batch verifier of digital signatures. It is shown that several new attacks may be launched against these published schemes as some weaknesses are exposed. Another common use of batch cryptography is the simultaneous generation of digital signatures. There is significantly less previous work on this area, and the present schemes have some limited use in practical applications. Several new batch signatures schemes are introduced that improve upon the existing techniques and some practical uses are illustrated. Electronic cash is a technology that demands complex protocols in order to furnish several security properties. These typically include anonymity, traceability of a double spender, and off-line payment features. Presently, the most efficient schemes make use of coin divisibility to withdraw one large financial amount that may be progressively spent with one or more merchants. Several new cash schemes are introduced here that make use of batch cryptography for improving the withdrawal, payment, and deposit of electronic coins. The devised schemes apply both to the batch signature and verification techniques introduced, demonstrating improved performance over the contemporary divisible based structures. The solutions also provide an alternative paradigm for the construction of electronic cash systems. Whilst electronic cash is used as the vehicle for demonstrating the relevance of batch cryptography to security related applications, the applicability of the techniques introduced extends well beyond this.
Resumo:
Hydrocarbon spills on roads are a major safety concern for the driving public and can have severe cost impacts both on pavement maintenance and to the economy through disruption to services. The time taken to clean-up spills and re-open roads in a safe driving condition is an issue of increasing concern given traffic levels on major urban arterials. Thus, the primary aim of the research was to develop a sorbent material that facilitates rapid clean-up of road spills. The methodology involved extensive research into a range of materials (organic, inorganic and synthetic sorbents), comprehensive testing in the laboratory, scale-up and field, and product design (i.e. concept to prototype). The study also applied chemometrics to provide consistent, comparative methods of sorbent evaluation and performance. In addition, sorbent materials at every stage were compared against a commercial benchmark. For the first time, the impact of diesel on asphalt pavement has been quantified and assessed in a systematic way. Contrary to conventional thinking and anecdotal observations, the study determined that the action of diesel on asphalt was quite rapid (i.e. hours rather than weeks or months). This significant finding demonstrates the need to minimise the impact of hydrocarbon spills and the potential application of the sorbent option. To better understand the adsorption phenomenon, surface characterisation techniques were applied to selected sorbent materials (i.e. sand, organo-clay and cotton fibre). Brunauer Emmett Teller (BET) and thermal analysis indicated that the main adsorption mechanism for the sorbents occurred on the external surface of the material in the diffusion region (sand and organo-clay) and/or capillaries (cotton fibre). Using environmental scanning electron microscopy (ESEM), it was observed that adsorption by the interfibre capillaries contributed to the high uptake of hydrocarbons by the cotton fibre. Understanding the adsorption mechanism for these sorbents provided some guidance and scientific basis for the selection of materials. The study determined that non-woven cotton mats were ideal sorbent materials for clean-up of hydrocarbon spills. The prototype sorbent was found to perform significantly better than the commercial benchmark, displaying the following key properties: • superior hydrocarbon pick-up from the road pavement; • high hydrocarbon retention capacity under an applied load; • adequate field skid resistance post treatment; • functional and easy to use in the field (e.g. routine handling, transportation, application and recovery); • relatively inexpensive to produce due to the use of raw cotton fibre and simple production process; • environmentally friendly (e.g. renewable materials, non-toxic to environment and operators, and biodegradable); and • rapid response time (e.g. two minutes total clean-up time compared with thirty minutes for reference sorbents). The major outcomes of the research project include: a) development of a specifically designed sorbent material suitable for cleaning up hydrocarbon spills on roads; b) submission of patent application (serial number AU2005905850) for the prototype product; and c) preparation of Commercialisation Strategy to advance the sorbent product to the next phase (i.e. R&D to product commercialisation).
Resumo:
Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.
Resumo:
Maintenance trains travel in convoy. In Australia, only the first train of the convoy pays attention to the track sig- nalization (the other convoy vehicles simply follow the preceding vehicle). Because of human errors, collisions can happen between the maintenance vehicles. Although an anti-collision system based on a laser distance meter is already in operation, the existing system has a limited range due to the curvature of the tracks. In this paper, we introduce an anti-collision system based on vision. The two main ideas are, (1) to warp the camera image into an image where the rails are parallel through a projective transform, and (2) to track the two rail curves simultaneously by evaluating small parallel segments. The performance of the system is demonstrated on an image dataset.
Resumo:
n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.
Resumo:
Recent advances in the understanding of the genetic, neurochemical, behavioral and cultural underpinnings of addiction have led to rapid advances in the understanding of addiction as a disease. In fact, advances in basic science and the development of new pharmacological and behavioral therapies associated with them are appearing faster than can be assimilated not only by clinical researchers but practitioners and policy makers as well. Translation of science-based addictions knowledge into improved prevention, assessment and treatment, and communication of these changes to researchers and practitioners are significant challenges to the field. The general aim of this book is to summarize current and potential linkages between advances in addiction science and innovations in clinical practice. Whilst this book is primarily focused on translation, it also encompasses some scientific advances that are relevant to dissemination, and the book is itself a tool for disseminating innovative thinking. The goal is to generate interest in application opportunities from both recent research and theoretical advances.
Resumo:
Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo
Resumo:
The critical factor in determining students' interest and motivation to learn science is the quality of the teaching. However, science typically receives very little time in primary classrooms, with teachers often lacking the confidence to engage in inquiry-based learning because they do not have a sound understanding of science or its associated pedagogical approaches. Developing teacher knowledge in this area is a major challenge. Addressing these concerns with didactic "stand and deliver" modes of Professional Development (PD) has been shown to have little relevance or effectiveness, yet is still the predominant approach used by schools and education authorities. In response to that issue, the constructivist-inspired Primary Connections professional learning program applies contemporary theory relating to the characteristics of effective primary science teaching, the changes required for teachers to use those pedagogies, and professional learning strategies that facilitate such change. This study investigated the nature of teachers' engagement with the various elements of the program. Summative assessments of such PD programs have been undertaken previously, however there was an identified need for a detailed view of the changes in teachers' beliefs and practices during the intervention. This research was a case study of a Primary Connections implementation. PD workshops were presented to a primary school staff, then two teachers were observed as they worked in tandem to implement related curriculum units with their Year 4/5 classes over a six-month period. Data including interviews, classroom observations and written artefacts were analysed to identify common themes and develop a set of assertions related to how teachers changed their beliefs and practices for teaching science. When teachers implement Primary Connections, their students "are more frequently curious in science and more frequently learn interesting things in science" (Hackling & Prain, 2008). This study has found that teachers who observe such changes in their students consequently change their beliefs and practices about teaching science. They enhance science learning by promoting student autonomy through open-ended inquiries, and they and their students enhance their scientific literacy by jointly constructing investigations and explaining their findings. The findings have implications for teachers and for designers of PD programs. Assertions related to teaching science within a pedagogical framework consistent with the Primary Connections model are that: (1) promoting student autonomy enhances science learning; (2) student autonomy presents perceived threats to teachers but these are counteracted by enhanced student engagement and learning; (3) the structured constructivism of Primary Connections resources provides appropriate scaffolding for teachers and students to transition from didactic to inquiry-based learning modes; and (4) authentic science investigations promote understanding of scientific literacy and the "nature of science". The key messages for designers of PD programs are that: (1) effective programs model the pedagogies being promoted; (2) teachers benefit from taking the role of student and engaging in the proposed learning experiences; (3) related curriculum resources foster long-term engagement with new concepts and strategies; (4) change in beliefs and practices occurs after teachers implement the program or strategy and see positive outcomes in their students; and (5) implementing this study's PD model is efficient in terms of resources. Identified topics for further investigation relate to the role of assessment in providing evidence to support change in teachers' beliefs and practices, and of teacher reflection in making such change more sustainable.
Resumo:
This paper presents a new method for winding configuration in planar magnetic elements with more than two layers. It has been proven by 3D Finite Element method and mathematical modeling that this suggested configuration results in reduction of the equivalent capacitive coupling in the planar inductor
Resumo:
Belonging to and identifying with a nation has, since the latter half of the 18th century, been a distinctly human quality. To be human is to be part of a nation. Yet, contemporary theorists such as Appadurai and Fukuyama argue this universal human trait is undergoing vast change, threatened, it seems, by irrelevance and obsolescence, a return to tribalism and widened conceptual horizons represented by the likes of transnationalism and cosmopolitanism. These same threats are often attributed to the changing ideas and experience of spatiality and temporality enabled by information and communication technologies such as the Internet, spurred on by the rising intensity of flow amongst and within the human population. This paper argues that in the analysis of changes to the nation—which I suggest is best considered as the nexus of the body politic, the social body and human bodies—it is the notion of lived time and lived space that is most appropriate. The notion of the lived is borrowed and extended from Henri Lefebvre, who theorises that between mentally conceived and physically perceived space, lies its socially lived counterpart, which he defines as “the materialisation of social being”. As such, lived space (and time) draws on both its material and mental aspects. It is the thesis of this paper that against such a background as lived time and lived space the nation becomes much more than a political concept and/or project and is revealed as lived phenomenon, experienced in and through the dynamics of everyday praxis. Inherent to this argument is the understanding that it is the interplay between the possibilities imagined of the nation and; its eventual realisation through social acts and practices that marks it as a profoundly human institution.
Resumo:
The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impact their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on giving the user a hardware token that generates one-time-passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this paper, we propose a scalable OTP solution using mobile phones and based on trusted computing technology that combines enhanced usability with strong security.
Resumo:
This study explores coteaching/cogenerative dialoguing with parents to investigate how it may be employed to engage parents more meaningfully in schools. The cogens provided a space where participants became aware of resources available for coteaching, made decisions about planning and enacting coteaching, as well as interstitial culture that facilitated positive parent-teacher relationships.